Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Karpova, S.S.; Kompan, M.E.; Maksimov, A.I.; Moshnikov, V.A.; Sapurina, I.Y.; Spivak, I.Y.; Terukov, E.I.; Terukova, E.E.; Titkov, A.N.; Tomasov, A.A.; et al. Fundamentals of Hydrogen Energy; Moshnikov, V.A., Terukov, E.I., Eds.; SPb. Publishing House of ETU LETI: Saint Petersburg, Russia, 2010; p. 288. [Google Scholar]
- Vrublevsky, I.; Chemyakova, K.; Lushpa, N.; Tuchkovsky, A.; Tzaneva, B.; Videkov, V. Obtaining, properties and application of nanoscale films of anodic titanium dioxide on Ti-Al films for perovskite solar cells. In Proceedings of the XXX International Scientific Conference Electronics (ET), Sozopol, Bulgaria, 15–17 September 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Aleshin, A.N.; Shcherbakov, I.P.; Gushchina, E.V.; Matyushkin, L.B.; Moshnikov, V.A. Solution-processed field-effect transistors based on polyfluorene–cesium lead halide nanocrystals composite films with small hysteresis of output and transfer characteristics. Org. Electron. 2017, 50, 213–219. [Google Scholar] [CrossRef]
- Aleshin, A.N.; Shcherbakov, I.P.; Kirilenko, D.A.; Matyushkin, L.B.; Moshnikov, V.A. Light-emitting field-effect transistors based on composite films of polyfluorene and CsPbBr 3 nanocrystals. Phys. Solid State 2019, 61, 256–262. [Google Scholar] [CrossRef]
- Lian, Z.; Yan, Q.; Gao, T.; Ding, J.; Lv, Q.; Ning, C.; Li, Q.; Sun, J.-L. Perovskite CH3NH3PbI3(Cl) Single Crystals: Rapid Solution Growth, Unparalleled Crystalline Quality, and Low Trap Density toward 108 cm–3. J. Am. Chem. Soc. 2016, 138, 9409–9412. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Turedi, B.; Alsalloum, A.Y.; Yang, C.; Zheng, X.; Gereige, I.; AlSaggaf, A.; Mohammed, O.F.; Bakr, O.M. Single-Crystal MAPbI3Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency. ACS Energy Lett. 2019, 6, 1258–1259. [Google Scholar] [CrossRef]
- Peng, W.; Wang, L.; Murali, B.; Ho, K.-T.; Bera, A.; Cho, N.; Kang, C.-F.; Burlakov, V.M.; Pan, J.; Sinatra, L.; et al. Solution-Grown Monocrystalline Hybrid Perovskite Films for Hole-Transporter-Free Solar Cells. Adv. Mater. 2016, 28, 3383–3390. [Google Scholar] [CrossRef]
- Chiang, C.-H.; Wu, C.-G. A Method to Prepare Highly Oriented MAPbI3 Crystallites for High Efficiency Perovskite Solar Cell to Achieve 86% Fill Factor. ACS Nano 2018, 10, 10355–10364. [Google Scholar] [CrossRef]
- Saliba, M.; Correa-Baena, J.-P.; Graatzel, M.; Hagfeldt, A.; Abate, A. Perovskite Solar Cells: From the Atomic Level to Film Quality and Device Performance. Angew. Chem. 2018, 57, 2554–2569. [Google Scholar] [CrossRef]
- MacDonald, G.A.; Yang, M.J.; Berweger, S.; Killgore, J.P.; Kabos, P.; Berry, J.J.; Zhu, K.; DelRio, F.W. Methylammonium lead iodide grain boundaries exhibit depth-dependent electrical properties. Energy Environ. Sci. 2016, 9, 3642–3649. [Google Scholar] [CrossRef]
- Correa-Baena, J.P.; Anaya, M.; Lozano, G.; Tress, W.; Domanski, K.; Saliba, M.; Matsui, T.; Jacobsson, T.J.; Calvo, M.E.; Abate, A.; et al. Unbrokenperovskite: Interplay of morphology, electro-optical properties and ionic movement. Adv. Mater. 2016, 28, 5031–5037. [Google Scholar] [CrossRef]
- Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J.-C.; Neukirch, A.J.; Gupta, G.; Crochet, J.J.; Chhowalla, M.; Tretiak, S.; Alam, M.A.; et al. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science 2015, 347, 522–525. [Google Scholar] [CrossRef]
- Ciesielski, R.; Schäfer, F.; Hartmann, N.F. Grain Boundaries Act as Solid Walls for Charge Carrier Diffusion in Large Crystal MAPI Thin Films. ACS Appl. Mater. Interfaces 2018, 10, 7974–7981. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Yadavalli, S.K.; Lizarazo-Ferro, C.D. Sub-Grain Special Boundaries in Halide Perovskite Thin Films Restrict Carrier Diffusion. ACS Energy Lett. 2018, 11, 2669–2670. [Google Scholar] [CrossRef]
- Xu, T.; Wan, Z.; Tang, H.; Zhao, C.; Lv, S.; Chen, Y.; Huang, W. Carbon quantum dot additive engineering for efficient and stable carbon-based perovskite solar cells. J. Alloy. Compd. 2021, 859, 157784. [Google Scholar] [CrossRef]
- Gueye, M.N.; Carella, A.; Faure-Vincent, J.; Demadrille, R.; Simonato, J.-P. Progress in understanding structure and transport properties of PEDOT-based materials: A critical review. Prog. Mater. Sci. 2020, 108, 100616. [Google Scholar] [CrossRef]
- Kim, Y.H.; Sachse, C.; Machala, M.L.; May, C.; Müller-Meskamp, L.; Leo, K. Highly conductive PEDOT: PSS electrode with optimized solvent and thermal posttreatment for ITO-free organic solar cells. Adv. Funct. Mater. 2011, 21, 1076–1081. [Google Scholar] [CrossRef]
- Wen, Y.; Xu, J. Scientific importance of water-processable PEDOT–PSS and preparation, challenge and new application in sensors of its film electrode: A review. J. Polym. Sci. Part A Polym. Chem. 2017, 55, 1121–1150. [Google Scholar] [CrossRef]
- Wang, R.; Xue, J.; Meng, L.; Lee, J.-W.; Zhao, Z.; Sun, P.; Cai, L.; Huang, T.; Wang, Z.; Wang, Z.-K.; et al. Caffeine Improves the Performance and Thermal Stability of Perovskite Solar Cells. Joule 2019, 3, 1464–1477. [Google Scholar] [CrossRef]
- Nardes, A.M.; Kemerink, M.; De Kok, M.M.; Vinken, E.; Maturova, K.; Janssen, R.A.J. Conductivity, work function, and environmental stability of PEDOT:PSS thin films reated with sorbitol. Org. Electron. 2008, 9, 727–734. [Google Scholar] [CrossRef]
- Tang, F.-C.; Chang, J.; Wu, F.-C.; Cheng, H.-L.; Hsu, S.-L.; Chen, J.-S.; Chou, W.-Y. Alignment of poly(3,4-ethylenedioxythiophene) polymer chains in photovoltaic cells by ultraviolet irradiation. J. Mater. Chem. 2012, 22, 22409–22417. [Google Scholar] [CrossRef]
- Anbalagan, A.K.; Gupta, S.; Chaudhary, M.; Kumar, R.R.; Chueh, Y.-L.; Tai, N.-H.; Lee, C.-H. Consequences of gamma-ray irradiation on structural and electronic properties of PEDOT:PSS polymer in air and vacuum environments. RSC Adv. 2021, 11, 20752–20759. [Google Scholar] [CrossRef]
- Sunghal, P.; Rattan, S. Swift Heavy Ion Irradiation as a Tool for Homogeneous Dispersion of Nanographite Platelets within the Polymer Matrices: Toward Tailoring the Properties of PEDOT:PSS/NanographiteNanocomposites. J. Phys. Chem. B 2016, 120, 3403–3413. [Google Scholar] [CrossRef] [PubMed]
- Nardes, A.M.; Janssen, R.J.; Kemerink, M. A morphological model for the solvent-enhanced conductivity of PEDOT:PSS thin films. Adv. Funct. Mater. 2008, 18, 865–871. [Google Scholar] [CrossRef]
- Niu, Q.; Huang, W.; Tong, J.; Lv, H.; Deng, Y.; Ma, Y.; Zhao, Z.; Xia, R.; Zeng, W.; Min, Y.; et al. Understanding the mechanism of PEDOT: PSS modification via solvent on the morphology of perovskitefilms for efficient solar cells. Synth. Met. 2018, 243, 17–24. [Google Scholar] [CrossRef]
- Xia, Y.; Ouyang, J. Significant conductivity enhancement of conductive poly(3,4-ethylenedioxythiophene): Poly(styrenesulfonate) films through a treatment with organic carboxylic acids and inorganic acids. ACS Appl. Mater. Interfaces 2010, 2, 474–483. [Google Scholar] [CrossRef] [PubMed]
- Xia, Y.; Sun, K.; Ouyang, J. Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices. Adv. Mater. 2012, 24, 2436–2440. [Google Scholar] [CrossRef] [PubMed]
- Mengistie, D.A.; Ibrahem, M.A.; Wang, P.-C.; Chu, C.-W. Highly Conductive PEDOT:PSS Treated with Formic Acid for ITO-Free Polymer Solar Cells. ACS Appl. Mater. Interfaces 2014, 4, 2292–2299. [Google Scholar] [CrossRef] [PubMed]
- Jeon, N.J.; Lee, J.; Noh, J.H.; Nazeeruddin, M.K.; Grätzel, M.; Seok, S.I. Efficient inorganic-organic hybrid perovskite solar cells based on pyrenearylamine derivatives as hole-transporting materials. J. Am. Chem. Soc. 2013, 135, 19087–19090. [Google Scholar] [CrossRef]
- Marques, A.S.; Szostak, R.; Marchezi, P.E.; Nogueira, A.F. Perovskite solar cells based on polyaniline derivatives as hole transport materials. J. Phys. Energy 2019, 1, 015004. [Google Scholar] [CrossRef]
- Fabretto, M.; Zuber, K.; Jariego-Moncunill, C.; Murphy, P. Measurement Protocols for Reporting PEDOT Thin Film Conductivity and Optical Transmission: A Critical Survey. Macromol. Chem. Phys. 2011, 19, 2173–2180. [Google Scholar] [CrossRef]
- Salim, T.; Sun, S.; Aberishna, Y.; Krishna, A.; Grimsdale, A.C.; Lam, Y.M. Perovskite-Based Solar Cells: Impact of Morphology and Device Architecture on Device Performance. J. Mater. Chem. A 2015, 3, 8943–8969. [Google Scholar] [CrossRef]
- Pascoe, A.R.; Gu, Q.; Rothmann, M.U.; Li, W.; Zhang, Y.; Scully, A.; Lin, X.; Spiccia, L.; Bach, U.; Cheng, Y.-B. Directing Nucleation and Growth Kinetics in Solution-Processed Hybrid Perovskite Thin-Films. Sci. China Mater. 2017, 60, 617–628. [Google Scholar] [CrossRef]
- Oku, T.; Yamanouchi, J.; Umemoto, Y.; Suzuki, A. Dendritic Structures of Photovoltaic Perovskite Crystals. Mater. Jpn. 2018, 57, 601. [Google Scholar] [CrossRef][Green Version]
- Huang, F.; Li, M.; Siffalovic, P.; Cao, G.; Tian, J. From scalable solution fabrication of perovskite films towards commercialization of solar cells. Energy Environ. Sci. 2019, 12, 518–549. [Google Scholar] [CrossRef]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.J.; Li, H.; Winget, P.; Papadopoulos, T.; Cheun, H.; Kim, J.; et al. A Universal Method to Produce Low–Work Function Electrodes for Organic Electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef] [PubMed]











Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spivak, Y.; Muratova, E.; Moshnikov, V.; Tuchkovsky, A.; Vrublevsky, I.; Lushpa, N. Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites. Materials 2022, 15, 990. https://doi.org/10.3390/ma15030990
Spivak Y, Muratova E, Moshnikov V, Tuchkovsky A, Vrublevsky I, Lushpa N. Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites. Materials. 2022; 15(3):990. https://doi.org/10.3390/ma15030990
Chicago/Turabian StyleSpivak, Yuliya, Ekaterina Muratova, Vyacheslav Moshnikov, Alexander Tuchkovsky, Igor Vrublevsky, and Nikita Lushpa. 2022. "Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites" Materials 15, no. 3: 990. https://doi.org/10.3390/ma15030990
APA StyleSpivak, Y., Muratova, E., Moshnikov, V., Tuchkovsky, A., Vrublevsky, I., & Lushpa, N. (2022). Improving the Conductivity of the PEDOT:PSS Layers in Photovoltaic Cells Based on Organometallic Halide Perovskites. Materials, 15(3), 990. https://doi.org/10.3390/ma15030990

