Effect of Austenitization Temperature on Hot Ductility of C-Mn-Al HSLA Steel
Abstract
:1. Introduction
2. Materials and Methods
3. Results
- austenitization temperature 1350 °C was described by four temperature zones (Z1–Z4);
- austenitization temperature 1250 °C was characterized only by three temperature zones (Z1–Z3).
4. Discussion
5. Conclusions
- For the test temperature of 1200 °C, maximum plasticity of 90% and 85% for austenitization temperatures 1250 °C/30 s and 1350 °C/30 s, respectively, was measured. Minimum plasticity of 45% for test temperature of 850 °C and 30% for test temperatures from 850 °C to 950 °C and austenitization temperatures of 1250 °C/30 s and 1350 °C/30 s, respectively, was determined.
- While the sample after austenitization at 1250 °C/30 s showed a ductile fracture, the sample after austenitization at 1350 °C/30 s showed a small reduction of area, with low-energy brittle intergranular fracture.
- AlN and AlN-MnS coarse precipitates at austenite grain boundaries are supposed to be the reason for brittle intergranular fracturing.
- Using Thermo-Calc software, it was found that AlN particles precipitate from solid solution below the temperature of 1425 °C.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arıkan, M.M. Hot Ductility Behavior of a Peritectic Steel during Continuous Casting. Metals 2015, 5, 986–999. [Google Scholar] [CrossRef] [Green Version]
- Crowther, D.N.; Mintz, B. Influence of carbon on hot ductility of steels. Mater. Sci. Technol. 1986, 2, 671–676. [Google Scholar] [CrossRef]
- Chimani, C.M.; Resch, H.; Mörwald, K.; Kolednik, O. Precipitation and phase transformation modelling to predict surface cracks and slab quality. Ironmak. Steelmak. 2005, 32, 75–79. [Google Scholar] [CrossRef]
- Kvackaj, T.; Bidulská, J.; Bidulský, R. Overview of HSS Steel Grades Development and Study of Reheating Condition Effects on Austenite Grain Size Changes. Materials 2021, 14, 1988. [Google Scholar] [CrossRef] [PubMed]
- Kvačkaj, T.; Bacsó, J.; Bidulská, J.; Lupták, M.; Pokorný, I.; Kvačkaj, M.; Vlado, M. Influence of cryo and classic rolling conditions on proccesing parameters of C-Si steel. Acta Metall. Slovaca 2010, 16, 268–276. [Google Scholar]
- Oktay, S.; Şeşen, M.K.; Di Nunzio, P.E. Investigation of the effect of isothermal heat treatments on mechanical properties of thermo-mechanically rolled S700MC steel grade. Acta Metall. Slovaca 2020, 26, 11–16. [Google Scholar] [CrossRef]
- Suzuki, H.G.; Nishimura, S.; Yamaguchi, S. Characteristics of Hot Ductility in Steels Subjected to the Melting and Solidification. Trans. Iron Steel Inst. Jpn. 1982, 22, 48–56. [Google Scholar] [CrossRef]
- Brimacombe, J.K.; Sorimachi, K. Crack formation in the continuous casting of steel. Metall. Trans. B 1977, 8, 489–505. [Google Scholar] [CrossRef]
- Paek, M.K.; Jang, J.M.; Do, K.H.; Pak, J.J. Nitrogen solubility in high manganese-aluminum alloyed liquid steels. Met. Mater. Int. 2013, 19, 1077–1081. [Google Scholar] [CrossRef]
- Nabeel, M.; Alba, M.; Dogan, N. Influence of Al and N Content and Cooling Rate on the Characteristics of Complex MnS Inclusions in AHSS. Crystals 2020, 10, 1054. [Google Scholar] [CrossRef]
- Penna, R.V.; Bartlett, L.N.; Constance, T. Understanding the Role of Inclusions on the Dynamic Fracture Toughness of High Strength Lightweight FeMnAl Steels. Int. J. Met. 2019, 13, 286–299. [Google Scholar] [CrossRef]
- Némethová, L.; Kvačkaj, T.; Mišičko, R.; Pokorný, I.; Kovárová, I. Structural changes of C-Mn-Nb-V steel during the reheating. Acta Metall. Slovaca 2009, 3, 173–179. [Google Scholar]
- Jang, J.M.; Paek, M.K.; Pak, J.J. Thermodynamics of Nitrogen Solubility and AlN Formation in Multi-Component High Mn Steel Melts. ISIJ Int. 2017, 57, 1821–1830. [Google Scholar] [CrossRef] [Green Version]
- Radis, R.; Kozeschnik, E. Kinetics of AlN precipitation in microalloyed steel. Model. Simul. Mater. Sci. Eng. 2010, 18, 055003. [Google Scholar] [CrossRef]
- Bott, J.H.; Yin, H.; Sridhar, S. AlN Formation in High Aluminium Content Fe-Al Alloys. In Proceedings of the 5th International Congress on the Science and Technology of Steelmaking, Dresden, Germany, 1–3 October 2012. [Google Scholar]
- Paek, M.K.; Jang, J.M.; Jiang, M.; Pak, J.J. Thermodynamics of AlN Formation in High Manganese-Aluminum Alloyed Liquid Steels. ISIJ Int. 2013, 53, 973–978. [Google Scholar] [CrossRef] [Green Version]
- Alba, M.; Nabeel, M.; Dogan, N. Investigation of Inclusion Formation in Light-Weight Fe–Mn–Al Steels using Automated Scanning Electron Microscope Equipped with Energy-Dispersive X-ray Spectroscopy. Steel Res. Int. 2019, 91, 1900477. [Google Scholar] [CrossRef]
- Nachtrab, W.T.; Chou, Y.T. High temperature ductility loss in carbon-manganese and niobium-treated steels. Metall. Mater. Trans. 1986, 17, 1995–2006. [Google Scholar] [CrossRef]
- Mintz, B.; Crowther, D.N. Hot ductility of steels and its relationship to the problem of transverse cracking in continuous casting. Int. Mater. Rev. 2010, 55, 168–196. [Google Scholar] [CrossRef]
- Comineli, O.; Abushosha, R.; Mintz, B. Influence of titanium and nitrogen on hot ductility of C–Mn–Nb–Al steels. Mater. Sci. Technol. 1999, 15, 1058–1068. [Google Scholar] [CrossRef]
- Abushosha, R.; Comineli, O.; Mintz, B. Influence of Ti on hot ductility of C–Mn–Al steels. Mater. Sci. Technol. 1999, 15, 278–286. [Google Scholar] [CrossRef]
- Mintz, B.; Arrowsmith, J.M. Hot-ductility behaviour of C–Mn–Nb–Al steels and its relationship to crack propagation during the straightening of continuously cast strand. Met. Technol. 1979, 6, 24–32. [Google Scholar] [CrossRef]
- Thomas, B.G.; Samarasekera, I.V.; Brimacombe, J.K. Mathematical model of the thermal processing of steel ingots: Part I. Heat flow model. Metall. Trans. B 1987, 18, 119–130. [Google Scholar] [CrossRef]
- Thermo-Calc Software. Available online: https://thermocalc.com (accessed on 20 November 2021).
- Yu, Y.C.; Chen, W.Q.; Zheng, H.G. Effects of Ti–Ce Refiners on Solidification Structure and Hot Ductility of Fe–36Ni Invar Alloy. J. Rare Earths 2013, 31, 927–932. [Google Scholar] [CrossRef]
- Li, Q.; Liu, W. Effect of Boron on Hot Ductility and Room Temperature Tensile Properties of Microalloyed Steels with Titanium and Niobium. Materials 2019, 12, 2290. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.; Zhao, Y.; Song, S. Highly Enhanced Hot Ductility Performance of Advanced SA508-4N RPV Steel by Trace Impurity Phosphorus and Rare Earth Cerium. Metals 2020, 10, 1598. [Google Scholar] [CrossRef]
- He, C.H.; Wang, J.; Chen, Y.; Yu, W.; Tang, D. Effects of Sn and Sb on the Hot Ductility of Nb+Ti Microalloyed Steels. Metals 2020, 10, 1679. [Google Scholar] [CrossRef]
- Gontijo, M.; Hoflehner, C.H.; Ilie, S.; Six, J.; Sommitsch, C.H. Holding Time Influence on the Hot Ductility Behavior of a Continuously Cast Low Alloy Steel. Metals 2021, 11, 64. [Google Scholar] [CrossRef]
- Vedani, M.; Ripamonti, D.; Mannucci, A.; Dellasega, D. Hot Ductility of Microalloyed Steels. Metall. Ital. 2008, 100, 19–24. [Google Scholar]
- Deng, Z.; He, Y.; Liu, J.; Yan, B.; Yang, Y.; McLean, A. Effect of Cooling Rate on AlN Precipitation in FeCrAl Stainless Steel During Solidification. Metals 2019, 9, 1091. [Google Scholar] [CrossRef] [Green Version]
- Alcantara, F.L.; Barbosa, R.A.N.M.; Cunha, M.A. Aluminium Nitride Precipitation in Fe-3%Si Steel. ISIJ Int. 2013, 53, 1211–1214. [Google Scholar] [CrossRef] [Green Version]
- Kalisz, D.; Rzadkosz, S. Modeling of the Formation of AlN Precipitates during Solidification of Steel. Arch. Foundry Eng. 2013, 13, 63–68. [Google Scholar] [CrossRef]
- Prislupčák, P.; Kvačkaj, T.; Bidulská, J.; Záhumenský, P.; Homolová, V.; Zimovčák, P. Austenite-Ferrite Transformation Temperatures of C Mn Al HSLA Steel. Acta Metall. Slovaca 2021, 27, 207–209. [Google Scholar] [CrossRef]
Component | C | Mn | Si | P | Al | Cr + Mo | Nb + Ti |
---|---|---|---|---|---|---|---|
wt% | max. 0.18 | max. 2.1 | max. 0.14 | max. 0.04 | max. 0.7 | max. 1.0 | max. 0.15 |
Composition of Particles | Number of Features | ECD [μm] 1.00–2.00 | ECD [μm] 2.01–3.00 | ECD [μm] 3.01–4.00 | ECD [μm] 4.01–5.00 | ECD [μm] 5.01–10.00 | ECD [μm] > 10.01 |
---|---|---|---|---|---|---|---|
AlN | 586 | 15 | 194 | 286 | 75 | 16 | 0 |
AlN-MnS | 203 | 7 | 66 | 70 | 42 | 15 | 3 |
AlMgO | 152 | 0 | 8 | 25 | 41 | 75 | 3 |
AlN-AlO | 60 | 0 | 8 | 22 | 21 | 9 | 0 |
AlO | 2 | 0 | 0 | 0 | 1 | 1 | 0 |
Total | 1003 | 22 | 276 | 403 | 180 | 116 | 6 |
Phase Equilibria | T [°C] |
---|---|
AlN, ferrite (α), M7C3 *, MX1(TiX), MX2(VC), MX3((NbTi)C) | 400–511 |
AlN, ferrite (α), M7C3 *, MX1(TiX), MX2(VC), MX3((NbTi)C), cementite | 511–524 |
AlN, ferrite (α), M7C3 *, MX1(TiX), MX3((NbTi)C), cementite | 524–539 |
AlN, ferrite (α), MX1(TiX), MX3((NbTi)C), cementite | 539–688 |
AlN, ferrite (α), austenite (γ), MX2(TiX), MX3((NbTi)C), cementite | 688–715 |
AlN, ferrite (α), austenite (γ), MX2(TiX), MX3((NbTi)C) | 715–894 |
AlN, austenite (γ), MX2(TiN), MX3((NbTi)C) | 894–957 |
AlN, austenite (γ), MX2(TiN) | 957–1278 |
AlN, austenite (γ) | 1278–1425 |
austenite (γ) | 1425–1480 |
Liquid, austenite (γ) | 1480–1484 |
Liquid, δ-ferrite, austenite (γ) | 1484–1485 |
Liquid, δ-ferrite | 1485–1517 |
Liquid | 1517- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Prislupcak, P.; Kvackaj, T.; Bidulska, J.; Zahumensky, P.; Homolova, V.; Juhar, L.; Zubko, P.; Zimovcak, P.; Gburik, R.; Demjan, I. Effect of Austenitization Temperature on Hot Ductility of C-Mn-Al HSLA Steel. Materials 2022, 15, 922. https://doi.org/10.3390/ma15030922
Prislupcak P, Kvackaj T, Bidulska J, Zahumensky P, Homolova V, Juhar L, Zubko P, Zimovcak P, Gburik R, Demjan I. Effect of Austenitization Temperature on Hot Ductility of C-Mn-Al HSLA Steel. Materials. 2022; 15(3):922. https://doi.org/10.3390/ma15030922
Chicago/Turabian StylePrislupcak, Peter, Tibor Kvackaj, Jana Bidulska, Pavol Zahumensky, Viera Homolova, Lubos Juhar, Pavol Zubko, Peter Zimovcak, Roman Gburik, and Ivo Demjan. 2022. "Effect of Austenitization Temperature on Hot Ductility of C-Mn-Al HSLA Steel" Materials 15, no. 3: 922. https://doi.org/10.3390/ma15030922
APA StylePrislupcak, P., Kvackaj, T., Bidulska, J., Zahumensky, P., Homolova, V., Juhar, L., Zubko, P., Zimovcak, P., Gburik, R., & Demjan, I. (2022). Effect of Austenitization Temperature on Hot Ductility of C-Mn-Al HSLA Steel. Materials, 15(3), 922. https://doi.org/10.3390/ma15030922