Microstructure and Mechanical Properties of Low- and Medium-Carbon Si-Rich Low-Alloy Steels Processed by Austemping after Intercritical Annealing
Abstract
:1. Introduction
2. Materials and Experimental Methods
3. Results and Discussion
3.1. Microstructures
3.2. Mechanical Properties
3.2.1. Tensile Properties
3.2.2. Impact Properties
3.2.3. Fractographs of Impacted Samples
4. Conclusions
- (1)
- Fine-grain polygonal ferrite with an average grain size of 2.2 μm and bainite ferrite laths with a thickness of 81–123 nm were obtained in the 0.33C steel. However, the ferrite was mainly strip-shaped with width of 2–4 μm in the 0.21C steel, and the morphology of bainite ferrite changed from lath to lath + granular mixed morphology upon increasing the austempering temperature.
- (2)
- The bainite transformation below Ms was complete, resulting in the formation of very few M/A constituents. Moreover, after above-Ms austempering, fine M/A constituents with the size less than 1 μm were obtained in the 0.33C steel; on the contrary, large M/A constituents with the size of 3–6 μm were obtained in the 0.21C steel.
- (3)
- Upon increasing the austempering temperature, the strength of both steels decreased, while their elongation increased. The tensile strength of the 0.33C steel was 1343–1538 MPa, the yield strength was 1038–1170 MPa, and the elongation was 9.5–12.3%. The tensile strength of the 0.21C steel was 1002–1173 MPa, the yield strength was 726–895 MPa, and the elongation was 12.5–18.2%. However, the impact energy showed the opposite trend. Upon increasing the austempering temperature, 0.33C steel increased from 72 J to 115 J, while 0.21C steel decreased from 239 J to 131 J. This is because the fine M/A constituents in the 0.33C steel were conducive to the improvement in impact toughness, while the large M/A constituents in the 0.21C steel seriously damaged the impact toughness.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- AlShammari, A.; Halim, M.M.; Yam, F.K.; Al-Hardan, N.H.M.; Kaus, N.H.M.; Umar, K.; Qahtan, T.F.; Ibrahim, M.N.M. The effect of substrate temperatures on the structural and conversion of thin films of reduced graphene oxide. Phys. B Condens. Matter 2019, 572, 296–301. [Google Scholar] [CrossRef]
- Ahmad, H.; Haseen, U.; Umar, K.; Ansari, M.S.; Ibrahim, M.N.M. Bioinspired 2D carbon sheets decorated with MnFe2O4 nanoparticles for preconcentration of inorganic arsenic, and its determination by ICP-OES. Microchim. Acta 2019, 186, 649. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Singh, S.B.; Ray, K.K. Influence of bainite/martensite-content on the tensile properties of low carbon dual-phase steels. Mater. Sci. Eng. A 2008, 474, 270–282. [Google Scholar] [CrossRef]
- Liedl, U.; Traint, S.; Werner, E.A. An unexpected feature of the stress-strain diagram of dual-phase steel. Comput. Mater. Sci. 2002, 25, 122–128. [Google Scholar] [CrossRef]
- Hofmann, H.; Mattissen, D.; Schaumann, T.W. Advanced cold rolled steels for automotive applications. Steel Res. Int. 2009, 80, 22–28. [Google Scholar] [CrossRef]
- Bouaziz, O.; Zurob, H.; Huang, M.X. Driving force and logic of development of advanced high strength steels for automotive applications. Steel Res. Int. 2013, 84, 937–947. [Google Scholar] [CrossRef]
- Dimatteo, A.; Colla, V.; Lovicu, G.; Valentini, R. Strain hardening behavior prediction model for automotive high strength multiphase steels. Steel Res. Int. 2015, 86, 1574–1582. [Google Scholar] [CrossRef]
- Saeidi, N.; Ekrami, A. Comparison of mechanical properties of martensite/ferrite and bainite/ferrite dual phase 4340 steels. Mater. Sci. Eng. A 2009, 523, 125–129. [Google Scholar] [CrossRef]
- Caballero, F.G.; Bhadeshia, H.K.D.H.; Mawella, K.J.A.; Jones, D.G.; Brown, P. Very strong low temperature bainite. Mater. Sci. Technol. 2002, 18, 279–284. [Google Scholar] [CrossRef] [Green Version]
- Caballero, F.G.; Bhadeshia, H.K.D.H. Very strong bainite. Curr. Opin. Solid State Mater. Sci. 2004, 8, 251–257. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Mateo, C.; Caballero, F.G.; Bhadeshia, H.K.D.H. Mechanical properties of low-temperature bainite. Mater. Sci. Forum 2005, 500–501, 495–502. [Google Scholar] [CrossRef] [Green Version]
- Avishan, B.; Garcia-Mateo, C.; Morales-Rivas, L.; Yazdani, S.; Caballero, F.G. Strengthening and mechanical stability mechanisms in nanostructured bainite. J. Mater. Sci. 2013, 48, 6121–6132. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Jia, X.; Guo, K.; Jia, N.N.; Wang, Y.F.; Wang, Y.H.; Wang, T.S. Transformation behavior and microstructure feature of large strain ausformed low-temperature bainite in a medium C-Si rich alloy steel. Mater. Sci. Eng. A 2017, 682, 527–534. [Google Scholar] [CrossRef]
- Zhao, J.; Guo, K.; He, Y.M.; Wang, Y.F.; Wang, T.S. Extremely high strength achievement in medium-C nanobainite steel. Scr. Mater. 2018, 152, 20–23. [Google Scholar] [CrossRef]
- Long, X.Y.; Zhang, F.C.; Kang, J.; Lv, B.; Shi, X.B. Low-temperature bainite in low-carbon steel. Mater. Sci. Eng. A 2014, 594, 344–351. [Google Scholar] [CrossRef]
- Soliman, M.; Mostafa, H.; El-Sabbagh, A.S.; Palkowski, H. Low temperature bainite in steel with 0.26 wt% C. Mater. Sci. Eng. A 2010, 527, 7706–7713. [Google Scholar] [CrossRef]
- Qian, L.H.; Zhou, Q.; Zhang, F.C.; Meng, J.Y.; Zhang, M.; Tian, Y. Microstructure and mechanical properties of a low carbon carbide-free bainitic steel co-alloyed with Al and Si. Mater. Des. 2012, 39, 264–268. [Google Scholar] [CrossRef]
- Bhattacharya, A.; Karmakar, A.; Karani, A.; Ghosh, M.; Chakrabarti, D. Processing of ultrafine-grained steels by warm rolling and annealing. J. Mater. Eng. Perform. 2019, 28, 753–769. [Google Scholar] [CrossRef]
- Pan, Z.Y.; Gao, B.; Lai, Q.Q.; Chen, X.F.; Cao, Y.; Liu, M.P.; Zhou, H. Microstructure and mechanical properties of a cold-rolled ultrafine-grained dual-phase steel. Materials 2018, 11, 1399. [Google Scholar] [CrossRef] [Green Version]
- Jahanara, A.H.; Mazaheri, Y.; Sheikhi, M. Correlation of ferrite and martensite micromechanical behavior with mechanical properties of ultrafine grained dual phase steels. Mater. Sci. Eng. A 2019, 764, 138206. [Google Scholar] [CrossRef]
- Beladi, H.; Timokhina, I.B.; Xiong, X.Y.; Hodgson, P.D. A novel thermomechanical approach to produce a fine ferrite and low-temperature bainitic composite microstructure. Acta Mater. 2013, 61, 7240–7250. [Google Scholar] [CrossRef]
- Zhao, T.; Jia, X.; Chen, C.; Zhang, F.C.; Wang, T.S. Simultaneously improved strength and impact toughness by introducing ultrafine ferrite in low-temperature bainitic steel. J. Mater. Res. Technol. 2021, 15, 5106–5113. [Google Scholar] [CrossRef]
- Navarro-López, A.; Hidalgo, J.; Sietsma, J.; Santofimia, M.J. Characterization of bainitic/martensitic structures formed in isothermal treatments below the Ms temperature. Mater. Charact. 2017, 128, 248–256. [Google Scholar] [CrossRef]
- Qian, L.H.; Li, Z.; Wang, T.L.; Li, D.D.; Zhang, F.C.; Meng, J.Y. Roles of pre-formed martensite in below-Ms bainite formation, microstructure, strain partitioning and impact absorption energies of low-carbon bainitic steel. J. Mater. Sci. Technol. 2022, 96, 69–84. [Google Scholar] [CrossRef]
- Chang, L.C.; Bhadeshia, H.K.D.H. Austenite films in bainitic microstructures. Mater. Sci. Technol. 1995, 11, 874–882. [Google Scholar] [CrossRef]
- Zhao, X.H.; Zhu, G.H.; Mao, W.M. Effect of Interaction Between Recrystallization and Transformation on Microstructure of Dual Phase Steel. Iron Steel 2009, 44, 86–89. (In Chinese) [Google Scholar]
- Barbier, D.; Germain, L.; Hazotte, A.; Goune, M.; Chbihi, A. Microstructures resulting from the interaction between ferrite recrystallization and austenite formation in dual-phase steels. J. Mater. Sci. 2015, 50, 374–381. [Google Scholar] [CrossRef]
- Meng, J.Y.; Feng, Y.; Zhou, Q.; Zhao, L.J.; Zhang, F.C.; Qian, L.H. Effects of austempering temperature on strength, ductility and toughness of low-C high-Al/Si Carbide-Free Bainitic Steel. J. Mater. Eng. Perform. 2015, 24, 3068–3076. [Google Scholar] [CrossRef]
- Navarro-López, A.; Sietsma, J.; Santofimia, M.J. Effect of prior athermal martensite on the isothermal transformation kinetics below Ms in a Low-C High-Si Steel. Metall. Mater. Trans. A 2016, 47, 1028–1039. [Google Scholar] [CrossRef] [Green Version]
- Zhao, L.J.; Qian, L.H.; Meng, J.Y.; Zhou, Q.; Zhang, F.C. Below-Ms austempering to obtain refined bainitic structure and enhanced mechanical properties in low-C high-Si/Al steels. Scr. Mater. 2016, 112, 96–100. [Google Scholar] [CrossRef]
- Zhao, J.L.; Lv, B.; Zhang, F.C.; Yang, Z.N.; Qian, L.H.; Chen, C.; Long, X.Y. Effects of austempering temperature on bainitic microstructure and mechanical properties of a high-C high-Si steel. Mater. Sci. Eng. 2019, 742, 179–189. [Google Scholar] [CrossRef]
- Golchin, S.; Avishan, B.; Yazdani, S. Effect of 10% ausforming on impact toughness of nano bainite austempered at 300 °C. Mater. Sci. Eng. A 2016, 656, 94–101. [Google Scholar] [CrossRef]
- Zhou, Q.; Qian, L.H.; Tan, J.; Meng, J.Y.; Zhang, F.C. Inconsistent effects of mechanical stability of retained austenite on ductility and toughness of transformation-induced plasticity steels. Mater. Sci. Eng. A 2013, 578, 370–376. [Google Scholar] [CrossRef]
- Gao, G.H.; Zhang, H.; Gui, X.L.; Luo, P.; Tan, Z.L.; Bai, B.Z. Enhanced ductility and toughness in an ultrahigh-strength Mn-Si-Cr-C steel: The great potential of ultrafine filmy retained austenite. Acta Mater. 2014, 76, 425–433. [Google Scholar] [CrossRef]
- Lacroix, G.; Pardoen, T.; Jacques, P.J. The fracture toughness of TRIP-assisted multiphase steels. Acta Mater. 2008, 56, 3900–3913. [Google Scholar] [CrossRef]
- Han, S.Y.; Shin, S.Y.; Lee, S.H.; Kim, N.J.; Bae, J.H.; Kim, K. Effects of cooling conditions on tensile and charpy impact properties of API X80 linepipe steels. Metall. Mater. Trans. A 2010, 41 Pt A, 329–340. [Google Scholar] [CrossRef] [Green Version]
- Lan, H.F.; Du, L.X.; Misra, R.D.K. Effect of microstructural constituents on strength-toughness combination in a low carbon bainitic steel. Mater. Sci. Eng. A 2014, 611, 194–200. [Google Scholar] [CrossRef]
Code | C | Mn | Si | Mo | Cr | P | S |
---|---|---|---|---|---|---|---|
0.33C | 0.33 | 0.74 | 1.55 | 0.20 | 0.51 | 0.002 | 0.006 |
0.21C | 0.21 | 0.94 | 1.63 | 0.20 | 0.51 | 0.001 | 0.006 |
0.33C | 0.21C | |||||
---|---|---|---|---|---|---|
790–280 | 790–300 | 790–320 | 840–340 | 840–360 | 840–380 | |
Thickness of BF plates, nm | 81 ± 6 | 98 ± 13 | 123 ± 18 | 201 ± 23 | 233 ± 26 | 264 ± 31 |
Volume fraction of RA, vol. % | 6.2 ± 0.2 | 6.8 ± 0.3 | 8.5 ± 0.5 | 8.5 ± 0.3 | 9.5 ± 0.4 | 12.7 ± 0.6 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, X.; Zhao, T.; Wang, L.; Sun, X.; Wang, Y.; Wang, T. Microstructure and Mechanical Properties of Low- and Medium-Carbon Si-Rich Low-Alloy Steels Processed by Austemping after Intercritical Annealing. Materials 2022, 15, 1178. https://doi.org/10.3390/ma15031178
Jia X, Zhao T, Wang L, Sun X, Wang Y, Wang T. Microstructure and Mechanical Properties of Low- and Medium-Carbon Si-Rich Low-Alloy Steels Processed by Austemping after Intercritical Annealing. Materials. 2022; 15(3):1178. https://doi.org/10.3390/ma15031178
Chicago/Turabian StyleJia, Xin, Ting Zhao, Lin Wang, Xiaowen Sun, Yuefeng Wang, and Tiansheng Wang. 2022. "Microstructure and Mechanical Properties of Low- and Medium-Carbon Si-Rich Low-Alloy Steels Processed by Austemping after Intercritical Annealing" Materials 15, no. 3: 1178. https://doi.org/10.3390/ma15031178
APA StyleJia, X., Zhao, T., Wang, L., Sun, X., Wang, Y., & Wang, T. (2022). Microstructure and Mechanical Properties of Low- and Medium-Carbon Si-Rich Low-Alloy Steels Processed by Austemping after Intercritical Annealing. Materials, 15(3), 1178. https://doi.org/10.3390/ma15031178