Judd–Ofelt Analysis and Emission Properties of Dy3+ Ions in Borogermanate Glasses
Abstract
:1. Introduction
2. Materials and Methods
3. Theoretical Background
4. Results and Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Judd, B.R. Optical absorption intensities of rare-earth ions. Phys. Rev. 1962, 127, 750–761. [Google Scholar] [CrossRef]
- Ofelt, G.S. Intensities of crystal spectra of rare-earth ions. J. Chem. Phys. 1962, 37, 511–520. [Google Scholar] [CrossRef]
- Hehlen, M.P.; Brik, M.G.; Krämer, K.W. 50th anniversary of the Judd–Ofelt theory: An experimentalist’s view of the formalism and its application. J. Lumin. 2013, 136, 221–239. [Google Scholar] [CrossRef]
- Huang, F.; Zhang, Y.; Hu, L.; Chen, D. Judd–Ofelt analysis and energy transfer processes of Er3+ and Nd3+ doped fluoroaluminate glasses with low phosphate content. Opt. Mater. 2014, 38, 167–173. [Google Scholar] [CrossRef]
- Lalla, E.A.; Konstantinidis, M.; De Souza, I.; Daly, M.G.; Martín, I.R.; Lavín, V.; Rodríguez-Mendoza, U.R. Judd-Ofelt parameters of RE3+-doped fluorotellurite glass (RE3+ = Pr3+, Nd3+, Sm3+, Tb3+, Dy3+, Ho3+, Er3+, and Tm3+). J. Alloys Compd. 2020, 845, 156028. [Google Scholar] [CrossRef]
- Hu, Y.; Shao, X.; Tan, L.; Shen, Y.; Liu, S.; Yue, Y. Spectroscopic properties of Er3+-doped oxyfluoro-germanate glass ceramics: A Judd-Ofelt theory analysis. J. Non-Cryst. Solids 2021, 574, 121167. [Google Scholar] [CrossRef]
- Wang, X.; Liu, M.-H.; Xu, Q.; Zhang, D.-L.; Zhang, P.; Wong, W.-H. Judd-Ofelt spectroscopic properties of Er3+-doped NaLa(WO4)2 polycrystalline powder. Spectrochim. Acta A 2021, 249, 119335. [Google Scholar] [CrossRef]
- Liang, H.; Liu, S.; Zhang, P.; Lei, W.; Luo, Z.; Lu, A. Er3+/Yb3+ co-doped SiO2-Al2O3-CaO-CaF2 glass: Structure, J-O analysis and fluorescent properties. Mater. Sci. Eng. B 2021, 264, 114919. [Google Scholar] [CrossRef]
- Choi, J.H.; Margaryan, A.; Margaryan, A.; Shi, F.G. Judd–Ofelt analysis of spectroscopic properties of Nd3+-doped novel fluorophosphate glass. J. Lumin. 2005, 114, 167–177. [Google Scholar] [CrossRef]
- Kumar, G.N.H.; Rao, J.L.; Prasad, K.R.; Ratnakaram, Y.C. Fluorescence and Judd–Ofelt analysis of Nd3+ doped P2O5–Na2O–K2O glass. J. Alloys Compd. 2009, 480, 208–215. [Google Scholar] [CrossRef]
- Raju, C.N.; Reddy, C.A.; Sailaja, S.; Seo, H.J.; Reddy, B.S. Judd–Ofelt theory: Optical absorption and NIR emission spectral studies of Nd3+:CdO–Bi2O3–B2O3 glasses for laser applications. J. Mater. Sci. 2012, 47, 772–778. [Google Scholar] [CrossRef]
- Chanthima, N.; Kaewkhao, J.; Tariwong, Y.; Sangwaranatee, N.; Sangwaranatee, N.W. Luminescence study and Judd-Ofelt analysis of CaO-BaO-P2O5 glasses doped with Nd3+ ions. Mater. Today Proc. 2017, 4, 6091–6098. [Google Scholar] [CrossRef]
- Zaman, F.; Srisittipokakun, N.; Rooh, G.; Khattak, S.A.; Singkiburin, N.; Kim, H.J.; Sangwaranatee, N.; Kaewkhao, J. Investigation of Li2O–Gd2O3–MO–B2O3–Nd2O3 (MO=Ba/Bi) glasses for laser applications by Judd–Ofelt (J–O) theory. J. Lumin. 2019, 215, 116639. [Google Scholar] [CrossRef]
- Mahraz, Z.A.S.; Sazali, E.S.; Sahar, M.R.; Amran, N.U.; Yaacob, S.N.S.; Aziz, S.M.; Mawlud, S.Q.; Noor, F.M.; Harun, A.N. Spectroscopic investigations of near-infrared emission from Nd3+-doped zinc-phosphate glasses: Judd-Ofelt evaluation. J. Non-Cryst. Solids 2019, 509, 106–114. [Google Scholar] [CrossRef]
- Ahmad, A.U.; Hashim, S.; Goshal, S.K. Optical traits of neodymium-doped new types of borate glasses: Judd-Ofelt analysis. Optik 2019, 199, 163515. [Google Scholar] [CrossRef]
- Nasser, K.; Aseev, V.; Ivanov, S.; Ignatiev, A.; Nikonorov, N. Optical, spectroscopic properties and Judd–Ofelt analysis of Nd3+-doped photo-thermo-refractive glass. J. Lumin. 2019, 213, 255–262. [Google Scholar] [CrossRef]
- Lin, X.; Liang, H.; Jiang, X.; Liu, L.; Wang, Z.; Luo, Y.; Liu, T.; Ning, T.; Lu, A. Thermal and fluorescence properties of Nd2O3-doped Gd2O3-Ga2O3-GeO2 glass based on the Judd-Ofelt theory. J. Non-Cryst. Solids 2022, 594, 121810. [Google Scholar] [CrossRef]
- Tanabe, S.; Ohyagi, T.; Soga, N.; Hanada, T. Compositional dependence of Judd-Ofelt parameters of Er3+ ions in alkali-metal borate glasses. Phys. Rev. B 1992, 46, 3305–3310. [Google Scholar] [CrossRef] [PubMed]
- Jlassi, I.; Elhouichet, H.; Ferid, M.; Barthou, C. Judd–Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5. J. Lumin. 2010, 130, 2394–2401. [Google Scholar] [CrossRef]
- Awang, A.; Ghoshal, S.K.; Sahar, M.R.; Dousti, M.R.; Amjad, R.J.; Nawaz, F. Enhanced spectroscopic properties and Judd-Ofelt parameters of Er-doped tellurite glass: Effect of gold nanoparticles. Curr. Appl. Phys. 2013, 13, 1813–1818. [Google Scholar] [CrossRef]
- Amjad, R.J.; Dousti, M.R.; Sahar, M.R. Spectroscopic investigation and Judd-Ofelt analysis of silver nanoparticles embedded Er3+-doped tellurite glass. Curr. Appl. Phys. 2015, 15, 1–7. [Google Scholar] [CrossRef] [Green Version]
- Gaafar, M.S.; Marzouk, S.Y. Judd-Ofelt analysis of spectroscopic properties of Er3+ doped TeO2-BaO-ZnO glasses. J. Alloys Compd. 2017, 723, 1070–1078. [Google Scholar] [CrossRef]
- Yusof, N.N.; Ghoshal, S.K.; Azlan, M.N. Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd-Ofelt analysis. J. Alloys Compd. 2017, 724, 1083–1092. [Google Scholar] [CrossRef]
- Moustafa, S.Y.; Sahar, M.R.; Ghoshal, S.K. Spectroscopic attributes of Er3+ ions in antimony phosphate glass incorporated with Ag nanoparticles: Judd-Ofelt analysis. J. Alloys Compd. 2017, 712, 781–794. [Google Scholar] [CrossRef]
- Lachheb, R.; Herrmann, A.; Assadi, A.A.; Reiter, J.; Körner, J.; Hein, J.; Rüssel, C.; Maâlej, R.; Damak, K. Judd–Ofelt analysis and experimental spectroscopic study of erbium doped phosphate glasses. J. Lumin. 2018, 201, 245–254. [Google Scholar] [CrossRef]
- Rodin, N.L.A.; Sahar, M.R. Erbium doped sodium magnesium boro-tellurite glass: Stability and Judd-Ofelt analysis. Mater. Chem. Phys. 2018, 216, 177–185. [Google Scholar] [CrossRef]
- Mariyappan, M.; Arunkumar, S.; Marimuthu, K. Judd-Ofelt analysis and NIR luminescence investigations on Er3+ ions doped B2O3–Bi2O3–Li2O–K2O glasses for photonic applications. Phys. B 2019, 572, 27–35. [Google Scholar] [CrossRef]
- Mandal, P.; Aditya, S.; Ghosh, S. Optimization of rare earth (Er3+) doping level in lead zinc phosphate glass through Judd-Ofelt analysis. Mater. Chem. Phys. 2020, 246, 122802. [Google Scholar] [CrossRef]
- Zanane, H.; Velazquez, M.; Denux, D.; Duclere, J.-R.; Cornette, J.; Kermaoui, A.; Kellou, H.; Lahaye, M.; Buffiere, S. Judd-Ofelt analysis and crystal field calculations of Er3+ ions in new oxyfluorogermanotellurite glasses and glass-ceramics. Opt. Mater. 2020, 100, 109640. [Google Scholar] [CrossRef]
- Iezid, M.; Goumeidane, F.; Abidi, A.; Poulain, M.; Legouera, M.; Prasad, P.S.; Środa, M.; Rao, P.V. Judd-Ofelt analysis and luminescence studies of Er3+ doped halogeno-antimonate glasses. Opt. Mater. 2021, 120, 111422. [Google Scholar] [CrossRef]
- Jayasimhadri, M.; Cho, E.-J.; Jang, K.-W.; Lee, H.S.; Kim, S.I. Spectroscopic properties and Judd–Ofelt analysis of Sm3+ doped lead–germanate–tellurite glasses. J. Phys. D Appl. Phys. 2008, 41, 175101. [Google Scholar] [CrossRef]
- Bhardwaj, S.; Shukla, R.; Sanghi, S.; Agarwal, A.; Pal, I. Spectroscopic properties of Sm3+ doped lead bismosilicate glasses using Judd–Ofelt theory. Spectrochim. Acta A 2014, 117, 191–197. [Google Scholar] [CrossRef] [PubMed]
- Kuhn, S.; Herrmann, A.; Rüssel, C. Judd–Ofelt analysis of Sm3+-doped lanthanum-aluminosilicate glasses. J. Lumin. 2015, 157, 390–397. [Google Scholar] [CrossRef]
- Mawlud, S.Q.; Ameen, M.M.; Sahar, M.R.; Mahraz, Z.A.S.; Ahmed, K.F. Spectroscopic properties of Sm3+ doped sodium-tellurite glasses: Judd-Ofelt analysis. Opt. Mater. 2017, 69, 318–327. [Google Scholar] [CrossRef]
- Ravina; Naveen; Sheetal; Kumar, V.; Dahiya, S.; Deopa, N.; Punia, R.; Rao, A.S. Judd-Ofelt itemization and influence of energy transfer on Sm3+ ions activated B2O3–ZnF2–SrO–SiO2 glasses for orange-red emitting devices. J. Lumin. 2021, 229, 117651. [Google Scholar] [CrossRef]
- Olivier, M.; Doualan, J.-L.; Nazabal, V.; Camy, P.; Adam, J.-L. Spectroscopic study and Judd–Ofelt analysis of Pr3+-doped Zr–Ba–La–Al glasses in visible spectral range. J. Opt. Soc. Amer. B 2013, 30, 2032–2042. [Google Scholar] [CrossRef]
- Kumar, M.V.V.; Gopal, K.R.; Reddy, R.R.; Reddy, G.V.L.; Hussain, N.S.; Jamalaiah, B.C. Application of modified Judd–Ofelt theory and the evaluation of radiative properties of Pr3+-doped lead telluroborate glasses for laser applications. J. Non-Cryst. Solids 2013, 364, 20–27. [Google Scholar] [CrossRef]
- Zhang, F.; Bi, Z.; Huang, A.; Xiao, Z. Luminescence and Judd–Ofelt analysis of the Pr3+ doped fluorotellurite glass. J. Lumin. 2015, 160, 85–89. [Google Scholar] [CrossRef]
- Flizikowski, G.A.S.; Zanuto, V.S.; Nunes, L.A.O.; Baesso, M.L.; Malacarne, L.C.; Astrath, N.G.C. Standard and modified Judd-Ofelt theories in Pr3+-doped calcium aluminosilicate glasses: A comparative analysis. J. Alloys Compd. 2019, 780, 705–710. [Google Scholar] [CrossRef]
- Shoaib, M.; Khan, I.; Rooh, G.; Wabaidur, S.M.; Islam, M.A.; Chanthima, N.; Kothan, S.; Ullah, I.; Ahad, A.; Kaewkhao, J. Judd-Ofelt and luminescence properties of Pr3+ doped ZnO-Gd2O3/GdF3-BaO-P2O5 glasses for visible and NIR applications. J. Lumin. 2022, 247, 118884. [Google Scholar] [CrossRef]
- Moorthy, L.R.; Rao, T.S.; Janardhanam, K.; Rao, A.S.; Subramanyam, Y. Judd-Ofelt parametrization and radiative transitions analysis of Tm3+ doped alkali chloroborophosphate glasses. Opt. Mater. 1999, 12, 459–465. [Google Scholar] [CrossRef]
- Florez, A.; Florez, M.; Messaddeq, Y.; Aegerter, M.A.; Porcher, P. Application of standard and modified Judd-Ofelt theories to thulium doped fluoroindate glass. J. Non-Cryst. Solids 1999, 247, 215–221. [Google Scholar] [CrossRef] [Green Version]
- Kadono, K.; Yazawa, T.; Shojiya, M.; Kawamoto, Y. Judd-Ofelt analysis and luminescence property of Tm3+ in Ga2S3-GeS2-La2S3 glasses. J. Non-Cryst. Solids 2000, 274, 75–80. [Google Scholar] [CrossRef]
- Yu, S.; Yang, Z.; Xu, S. Judd–Ofelt and laser parameterization of Tm3+-doped barium gallo-germanate glass fabricated with efficient dehydration methods. Opt. Mater. 2009, 31, 1723–1728. [Google Scholar] [CrossRef]
- Shojiya, M.; Kawamoto, Y.; Kadono, K. Judd–Ofelt parameters and multiphonon relaxation of Ho3+ ions in ZnCl2-based glass. J. Appl. Phys. 2001, 89, 4944–4950. [Google Scholar] [CrossRef]
- Zhou, B.; Pun, E.Y.B.; Lin, H.; Yang, D.; Huang, L. Judd–Ofelt analysis, frequency upconversion, and infrared photoluminescence of Ho3+-doped and Ho3+/Yb3+-codoped lead bismuth gallate oxide glasses. J. Appl. Phys. 2009, 106, 103105. [Google Scholar] [CrossRef]
- Balaji, S.; Sontakke, A.D.; Sen, R.; Kalyandurg, A. Efficient ~2.0 μm emission from Ho3+ doped tellurite glass sensitized by Yb3+ ions: Judd-Ofelt analysis and energy transfer mechanism. Opt. Mater. Exp. 2011, 1, 138–150. [Google Scholar] [CrossRef]
- Azam, M.; Rai, V.K. Ho3+-Yb3+ codoped tellurite based glasses in visible lasers and optical devices: Judd-Ofelt analysis and frequency upconversion. Solid State Sci. 2017, 66, 7–15. [Google Scholar] [CrossRef]
- Alqarni, A.S.; Hussin, R.; Ghoshal, S.K.; Alamri, S.N.; Yamusa, Y.A.; Jupri, S.A. Intense red and green luminescence from holmium activated zincsulfo-boro-phosphate glass: Judd-Ofelt evaluation. J. Alloys Compd. 2019, 808, 151706. [Google Scholar] [CrossRef]
- Azam, M.; Mohanty, D.K.; Rai, V.K.; Singh, K. Luminescence and Judd-Ofelt study of Ho3+/Ho3+-Yb3+ doped/ codoped lead tellurite glasses for multifunctional applications. J. Lumin. 2021, 239, 118319. [Google Scholar] [CrossRef]
- Ravi, O.; Reddy, C.M.; Reddy, B.S.; Raju, B.D.P. Judd–Ofelt analysis and spectral properties of Dy3+ ions doped niobium containing tellurium calcium zinc borate glasses. Opt. Commun. 2014, 312, 263–268. [Google Scholar] [CrossRef]
- El-Maaref, A.A.; Shaaban, K.H.S.; Abdelawwad, M.; Saddeek, Y.B. Optical characterizations and Judd-Ofelt analysis of Dy3+ doped borosilicate glasses. Opt. Mater. 2017, 72, 169–176. [Google Scholar] [CrossRef]
- Tuyen, V.P.; Quang, V.X.; Do, P.V.; Thanh, L.D.; Ca, N.X.; Hoa, V.X.; van Tuat, L.; Thi, L.A.; Nogami, M. An in-depth study of the Judd-Ofelt analysis, spectroscopic properties and energy transfer of Dy3+ in alumino-lithium-telluroborate glasses. J. Lumin. 2019, 210, 435–443. [Google Scholar] [CrossRef]
- George, H.; Deopa, N.; Kaur, S.; Prasad, A.; Sreenivasulu, M.; Jayasimhadri, M.; Rao, A.S. Judd-Ofelt parametrization and radiative analysis of Dy3+ ions doped Sodium Bismuth Strontium Phosphate glasses. J. Lumin. 2019, 215, 116693. [Google Scholar] [CrossRef]
- Ichoja, A.; Hashim, S.; Ghoshal, S.K. Judd−Ofelt calculations for spectroscopic characteristics of Dy3+-activated strontium magnesium borate glass. Optik 2020, 218, 165001. [Google Scholar] [CrossRef]
- Poonam; Shivani; Anu; Kumar, A.; Sahu, M.K.; Rani, P.R.; Deopa, N.; Punia, R.; Rao, A.S. Judd-Ofelt Parameterization and Luminescence Characterization of Dy3+ Doped Oxyfluoride Lithium Zinc Borosilicate Glasses for Lasers and w-LEDs. J. Non-Cryst. Solids 2020, 544, 120187. [Google Scholar] [CrossRef]
- Lakshminarayana, G.; Wagh, A.; Lira, A.; Kityk, I.V.; Lee, D.-E.; Yoon, J.; Park, T. Dy3+: B2O3–Al2O3–ZnO–Bi2O3–BaO–M2O (M = Li; Na; and K) glasses: Judd–Ofelt analysis and photoluminescence investigation for WLED applications. J. Mater. Sci. Mater. Electron. 2020, 31, 2481–2496. [Google Scholar] [CrossRef]
- Okasha, A.; Marzouk, S.Y. Linear and nonlinear optical properties and luminescence of Dy+3-doped aluminoborate glasses: Judd–Ofelt investigation. J. Mater. Sci. Mater. Electron. 2021, 32, 20431–20444. [Google Scholar] [CrossRef]
- Divina, R.; Teresa, P.E.; Marimuthu, K. Dy3+ ion as optical probe to study the luminescence behavior of Alkali lead bismuth borate glasses for w-LED application. J. Alloys Compd. 2021, 883, 160845. [Google Scholar] [CrossRef]
- Mahamuda, S.K.; Syed, F.; Devi, C.B.A.; Swapna, K.; Prasad, M.V.V.K.S.; Venkateswarlu, M.; Rao, A.S. Spectral characterization of Dy3+ ions doped phosphate glasses for yellow laser applications. J. Non-Cryst. Solids 2021, 555, 120538. [Google Scholar] [CrossRef]
- Vidhi; Ankita; Anu; Rao, A. S. Spectroscopic characterizations of Dy3+ ions doped phosphate glasses for epoxy-free white LED applications. Opt. Mater. 2022, 132, 112863. [Google Scholar] [CrossRef]
- Chandrappa, V.; Basavapoornima, C.; Kesavulu, C.R.; Babu, A.M.; Depuru, S.R.; Jayasankar, C.K. Spectral studies of Dy3+:zincphosphate glasses for white light source emission applications: A comparative study. J. Non-Cryst. Solids 2022, 583, 121466. [Google Scholar] [CrossRef]
- Anu; Deopa, N.; Rao, A.S. Structural and luminescence characteristics of thermally stable Dy3+ doped oxyfluoride strontium zinc borosilicate glasses for photonic device applications. Opt. Laser Technol. 2022, 154, 108328. [Google Scholar] [CrossRef]
- Poojha, M.K.K.; Vijayakumar, M.; Matheswaran, P.; Yousef, E.S.; Marimuthu, K. Modifier’s influence on spectral properties of dysprosium ions doped lead boro-telluro-phosphate glasses for white light applications. Opt. Laser Technol. 2022, 156, 108585. [Google Scholar] [CrossRef]
- Ravi, N.; Neelima, G.; Nallabala, N.K.R.; Kummara, V.K.; Ravanamma, R.; Reddy, V.J.; Prasanth, M.; Suresh, K.; Babu, P.; Venkatramu, V. Role of excitation wavelength and dopant concentration on white light tunability of dysprosium doped titania-fluorophosphate glasses. Opt. Mater. 2021, 111, 110593. [Google Scholar] [CrossRef]
- Kowalska, K.; Kuwik, M.; Polak, J.; Pisarska, J.; Pisarski, W.A. Transition Metals (Cr3+) and Lanthanides (Eu3+) in Inorganic Glasses with Extremely Different Glass-Formers B2O3 and GeO2. Materials 2021, 14, 7156. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J.; Han, J.; Liu, C.; Ruan, J. Ultrafast charge carrier dynamics and photoluminescence of CsPbBr3−xIx quantum dots in boro-germanate glasses. J. Am. Ceram. Soc. 2022, 105, 7228–7237. [Google Scholar] [CrossRef]
- Gökçe, M.; Şentürk, U.; Uslu, D.K.; Burgaz, G.; Şahin, Y.; Gökçe, A.G. Investigation of europium concentration dependence on luminescent properties of borogermanate glasses. J. Lumin. 2017, 192, 263–268. [Google Scholar] [CrossRef]
- Malashkevich, G.E.; Sigaev, V.N.; Golubev, N.V.; Savinkov, V.I.; Sarkisov, P.D.; Khodasevich, I.A.; Dashkevich, V.I.; Mudryi, A.V. Luminescence of borogermanate glasses activated by Er3+ and Yb3+ ions. J. Non-Cryst. Solids 2011, 357, 67–72. [Google Scholar] [CrossRef]
- Gökçe, M.; Kocyiğit, D. Spectroscopic investigations of Dy3+ doped borogermanate glasses for laser and wLED applications. Opt. Mater. 2019, 89, 568–575. [Google Scholar] [CrossRef]
- Manasa, P.; Jayasankar, C.K. Spectroscopic assessment of Dy3+ ions in lead fluorosilicate glass as a prospective material for solid state yellow laser. Spectrochim. Acta A 2019, 212, 315–321. [Google Scholar] [CrossRef] [PubMed]
- Rani, P.R.; Venkateswarlu, M.; Mahamuda, S.; Swapna, K.; Deopa, N.; Rao, A.S. Spectroscopic studies of Dy3+ ions doped barium lead alumino fluoro borate glasses. J. Alloys Compd. 2019, 787, 503–518. [Google Scholar] [CrossRef]
- Lodi, T.A.; Dantas, N.F.; Goncalves, T.S.; de Camargo, A.S.S.; Pedrochi, F.; Steimacher, A. Dy3+ doped calcium boroaluminate glasses and Blue Led for smart white light generation. J. Lumin. 2019, 207, 378–385. [Google Scholar] [CrossRef]
- Kıbrıslı, O.; Ersundu, A.E.; Ersundu, M.C. Dy3+ doped tellurite glasses for solid-state lighting: An investigation through physical, thermal, structural and optical spectroscopy studies. J. Non-Cryst. Solids 2019, 513, 125–136. [Google Scholar] [CrossRef]
- Shasmal, N.; Karmakar, B. White light-emitting Dy3+-doped transparent chloroborosilicate glass: Synthesis and optical properties. J. Asian Ceram. Soc. 2019, 7, 42–52. [Google Scholar] [CrossRef] [Green Version]
- Shoaib, M.; Rajaramakrishna, R.; Rooh, G.; Chanthima, N.; Kim, H.J.; Saiyasombat, C.; Botta, R.; Nuntawong, N.; Kothan, S.; Kaewkhao, J. Structural and luminescence study of Dy3+ doped phosphate glasses for solid state lighting applications. Opt. Mater. 2020, 109, 110322. [Google Scholar] [CrossRef]
- Zaman, F.; Srisittipokakun, N.; Rooh, G.; Khattak, S.A.; Kaewkhao, J.; Rani, M.; Kim, H.J. Comparative study of Dy3+ doped borate glasses on the basis of luminescence and lasing properties for white-light generation. Opt. Mater. 2021, 119, 111308. [Google Scholar] [CrossRef]
- Amjad, R.J.; Sales, T.O.; Sattar, A.; Jacinto, C.; Dousti, M.R. Spectral studies of highly Dy3+ doped PbO–ZnO–B2O3–P2O5 glasses. J. Lumin. 2021, 231, 117839. [Google Scholar] [CrossRef]
- Roopa, B.; Eraiah, B. Experimental and theoretical approach on the physical, structural and optical properties of ZrO2-Na2O-B2O3 glasses doped with Dy2O3. J. Non-Cryst. Solids 2021, 551, 120394. [Google Scholar] [CrossRef]
- Prakash, A.H.D.; Mahamuda, S.; Alzahrani, J.S.; Sailaja, P.; Swapna, K.; Venkateswarlu, M.; Rao, A.S.; Alrowaili, Z.A.; Olarinoye, I.O.; Al-Buriahi, M.S. Synthesis and characterization of B2O3–Bi2O3–SrO–Al2O3–PbO–Dy2O3 glass system: The role of Bi2O3/Dy2O3 on the optical, structural, and radiation absorption parameters. Mater. Res. Bull. 2022, 155, 111952. [Google Scholar] [CrossRef]
- Jayasimhadri, V.M.; Divi Haranath, D. Spectroscopic investigations of Dy3+-doped tungstate–tellurite glasses for solid-state lighting applications. Int. J. Appl. Glass Sci. 2022, 13, 645–654. [Google Scholar] [CrossRef]
- Chandrappa, V.; Basavapoornima, C.; Venkatramu, V.; Depuru, S.R.; Kaewkhao, J.; Pecharapa, W.; Jayasankar, C.K. A critical review and future prospects of Dy3+-doped glasses for white light emission applications. Optik 2022, 266, 169583. [Google Scholar] [CrossRef]
- Liu, R.; Chen, M.; Zhu, X.; Zhou, Y.; Zeng, F.; Su, Z. Luminescent properties and structure of Dy3+ doped germanosilicate glass. J. Lumin. 2020, 226, 117378. [Google Scholar] [CrossRef]
- Monisha, M.; Mazumder, N.; Lakshminarayana, G.; Mandal, S.; Kamath, S.D. Energy transfer and luminescence study of Dy3+ doped zincaluminoborosilicate glasses for white light emission. Ceram. Int. 2021, 47, 598–610. [Google Scholar] [CrossRef]
- Kuwik, M.; Górny, A.; Pisarski, W.A.; Pisarska, J. Influence of glass formers and glass modifiers on spectral properties and CIE coordinates of Dy3+ ions in lead-free borate glasses. Spectrochim. Acta A 2022, 268, 120693. [Google Scholar] [CrossRef]
- Jayasankar, C.K.; Rukmini, E. Spectroscopic investigations of Dy3+ ions in borosulphate glasses. Phys. B 1997, 240, 273–288. [Google Scholar] [CrossRef]
- Li, H.Y.; Shen, L.F.; Pun, E.Y.B.; Lin, H. Dy3+-doped germanate glasses for waveguide-typed irradiation light sources. J. Alloys Compd. 2015, 646, 586–591. [Google Scholar] [CrossRef]
- Li, Y.H.; Chen, B.J.; Pun, E.Y.B.; Lin, H. Multichannel transition emissions of Dy3+ in fiber-adaptive germanium tellurite glasses. J. Appl. Phys. 2013, 113, 123507. [Google Scholar] [CrossRef]
- Kumar, J.S.; Pavani, K.; Babu, A.M.; Giri, N.K.; Rai, S.B.; Moorthy, L.R. Fluorescence characteristics of Dy3+ ions in calcium fluoroborate glasses. J. Lumin. 2010, 130, 1916–1923. [Google Scholar] [CrossRef]
- Swapna, K.; Mahamuda, S.; Rao, A.S.; Jayasimhadri, M.; Sasikala, T.; Moorthy, L.R. Visible fluorescence characteristics of Dy3+ doped zinc alumino bismuth borate glasses for optoelectronic devices. Ceram. Int. 2013, 39, 8459–8465. [Google Scholar] [CrossRef]
- Mohd Saidi, M.S.A.; Ghoshal, S.K.; Arifin, R.; Roslan, M.K.; Muhammad, R.; Shamsuri, W.N.W.; Abdullah, M.; Shaharin, M.S. Spectroscopic properties of Dy3+ doped tellurite glass with Ag/TiO2 nanoparticles inclusion: Judd-Ofelt analysis. J. Alloys Compd. 2018, 754, 171–183. [Google Scholar] [CrossRef]
- Huy, B.T.; Seo, M.-H.; Lim, J.-M.; Lee, Y.-I.; Thanh, N.T.; Quang, V.X.; Hoai, T.T.; Hong, N.A. Application of the Judd—Ofelt Theory to Dy3+-Doped Fluoroborate/Sulphate Glasses. J. Korean Phys. Soc. 2011, 59, 3300–3307. [Google Scholar] [CrossRef]
- Naick, B.N.; Damodaraiah, S.; Prasad, V.R.; Vijaya Lakshmi, R.P.; Ratnakaram, Y.C. Judd-Ofelt analysis and luminescence studies on Dy3+ -doped different phosphate glasses for white light emitting material applications. Optik 2019, 192, 162980. [Google Scholar] [CrossRef]
- Ahmad, A.U.; Hashim, S.; Ghoshal, S.K. Spectroscopic characteristics of Dy3+ impurities–doped borate-based glasses: Judd–Ofelt calculation. Mater. Chem. Phys. 2020, 253, 123386. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, J.; Hu, L. Spectroscopic properties and Judd-Ofelt theory analysis of Dy3+ doped oxyfluoride silicate glass. J. Appl. Phys. 2007, 101, 043110. [Google Scholar] [CrossRef]
- Zekri, M.; Hermann, A.; Turki, R.; Rüssel, C.; Maâlej, R.; Damak, K. Experimental and theoretical studies of Dy3+ doped alkaline earth aluminosilicate glasses. J. Lumin. 2019, 212, 354–360. [Google Scholar] [CrossRef]
- Krishna, V.M.; Mahamuda, S.; Talewar, R.A.; Swapna, K.; Venkateswarlu, M.; Rao, A.S. Dy3+ ions doped oxy-fluoro boro tellurite glasses for the prospective optoelectronic device applications. J. Alloys Compd. 2018, 762, 814–826. [Google Scholar] [CrossRef]
- Lisiecki, R. Oxyfluoride germanatetellurite glasses doped with dysprosium—Spectroscopic characteristic and luminescence thermometry qualities. J. Non-Cryst. Solids 2022, 597, 121922. [Google Scholar] [CrossRef]
- Pisarski, W.A.; Pisarska, J.; Żur, L.; Goryczka, T. Structural and optical aspects for Eu3+ and Dy3+ ions in heavy metal glasses based on PbO–Ga2O3–XO2 (X = Te, Ge, Si). Opt. Mater. 2013, 35, 1051–1056. [Google Scholar] [CrossRef]
- Pisarska, J.; Pisarski, W.A.; Lisiecki, R.; Ryba-Romanowski, W. Phonon sideband analysis and near-infrared emission in heavy metal oxide glasses. Materials 2021, 14, 121. [Google Scholar] [CrossRef]
- Linganna, K.; Haritha, P.; Krishnaiah, K.V.; Venkatramu, V.; Jayasankar, C.K. Optical and luminescence properties of Dy3+ ions in K–Sr–Al phosphate glasses for yellow laser applications. Appl. Phys. B 2014, 117, 75–84. [Google Scholar] [CrossRef]
No | Glass Code | Chemical Composition [mol%] |
---|---|---|
(1) | GeO2-BaO-Ga2O3 | 60GeO2-30BaO-9.5Ga2O3-0.5Dy2O3 |
(2) | GeO2:B2O3 = 11:1 | 55GeO2-5B2O3-30BaO-9.5Ga2O3-0.5Dy2O3 |
(3) | GeO2:B2O3 = 5:1 | 50GeO2-10B2O3-30BaO-9.5Ga2O3-0.5Dy2O3 |
(4) | GeO2:B2O3 = 2:1 | 40GeO2-20B2O3-30BaO-9.5Ga2O3-0.5Dy2O3 |
(5) | GeO2:B2O3 = 1:1 | 30GeO2-30B2O3-30BaO-9.5Ga2O3-0.5Dy2O3 |
(6) | GeO2:B2O3 = 1:2 | 20GeO2-40B2O3-30BaO-9.5Ga2O3-0.5Dy2O3 |
(7) | GeO2:B2O3 = 1:5 | 10GeO2-50B2O3-30BaO-9.5Ga2O3-0.5Dy2O3 |
(8) | B2O3-BaO-Ga2O3 | 60B2O3-30BaO-9.5Ga2O3-0.5Dy2O3 |
Parameters | Symbols | Units |
---|---|---|
Theoretical oscillator strength | Pcalc | - |
Measure oscillator strength | Pmeas | - |
Judd–Ofelt intensity parameters | Ωt (t = 2, 4, 6) | 10−20 cm2 |
Spectroscopic quality parameter | χ (Ω4/Ω6) | - |
Radiative transition probability | AJ | s−1 |
Total radiative transition probability | AT | s−1 |
Luminescence branching ratio | β | % |
Radiative lifetime | τrad | µs |
Measured lifetime | τmeas | µs |
Quantum efficiency | η | % |
Peak emission wavelength | λp | nm |
Emission linewidth | Δλ | nm |
Full width at half maximum | FWHM | nm |
Peak stimulated emission cross-section | σem | 10−21 cm2 |
Levels | Energy [cm−1] | GeO2-BaO-Ga2O3 | GeO2:B2O3 = 11:1 | GeO2:B2O3 = 5:1 | GeO2:B2O3 = 2:1 | ||||
---|---|---|---|---|---|---|---|---|---|
Pmeas | Pcalc | Pmeas | Pcalc | Pmeas | Pcalc | Pmeas | Pcalc | ||
6H11/2 6F11/2 6F9/2 6F7/2 6F3/2 4F9/2 4I15/2 4G11/2 4F7/2,4I13/2 4M19/2,4D3/2,6P5/2 6P7/2 | 6040 7960 9300 11,290 13,450 21,200 22,200 23,600 25,900 27,500 28,700 | 1.260 8.220 1.580 1.410 0.090 0.150 0.330 0.075 0.820 0.730 3.070 | 1.109 8.240 1.783 1.391 0.117 0.105 0.360 0.063 0.601 0.932 2.364 | 1.060 8.150 1.500 1.260 0.090 0.080 0.330 0.070 0.750 0.650 3.200 | 0.980 8.161 1.677 1.168 0.092 0.087 0.311 0.069 0.597 0.754 2.648 | 1.190 7.600 1.500 1.580 0.100 0.080 0.310 0.065 0.750 0.720 2.910 | 1.089 7.613 1.748 1.417 0.122 0.107 0.357 0.057 0.573 0.960 2.157 | 1.120 6.980 1.470 1.310 0.100 0.070 0.350 0.090 0.900 0.700 2.770 | 0.987 6.998 1.651 1.298 0.110 0.098 0.322 0.057 0.546 0.871 2.160 |
Levels | Energy [cm−1] | GeO2:B2O3 = 1:1 | GeO2:B2O3 = 1:2 | GeO2:B2O3 = 1:5 | B2O3-BaO-Ga2O3 | ||||
---|---|---|---|---|---|---|---|---|---|
Pmeas | Pcalc | Pmeas | Pcalc | Pmeas | Pcalc | Pmeas | Pcalc | ||
6H11/2 6F11/2 6F9/2 6F7/2 6F3/2 4F9/2 4I15/2 4G11/2 4F7/2,4I13/2 4M19/2,4D3/2,6P5/2 6P7/2 | 6040 7960 9300 11,290 13,450 21,200 22,200 23,600 25,900 27,500 28,700 | 1.160 6.850 1.650 1.140 0.140 0.130 0.350 0.075 0.750 0.770 2.470 | 1.000 6.871 1.690 1.346 0.115 0.102 0.328 0.056 0.551 0.906 2.160 | 1.170 6.120 1.720 1.860 0.100 0.090 0.360 0.070 0.800 0.870 2.120 | 1.137 6.125 1.867 1.699 0.155 0.130 0.386 0.046 0.549 1.186 1.745 | 1.120 5.600 1.580 1.400 0.100 0.080 0.340 0.065 0.750 0.880 1.970 | 1.004 5.615 1.659 1.481 0.134 0.113 0.339 0.043 0.496 1.029 1.637 | 1.090 5.390 1.740 1.650 0.160 0.100 0.330 0.085 0.810 0.740 2.000 | 1.038 5.397 1.810 1.612 0.146 0.123 0.353 0.046 0.531 1.117 1.800 |
Glasses | Judd–Ofelt Intensity Parameters Ωt (t = 2, 4, 6) [in 10−20 cm2 Units] | χ (Ω4/Ω6) | ||
---|---|---|---|---|
Ω2 | Ω4 | Ω6 | ||
GeO2-BaO-Ga2O3 GeO2:B2O3 = 11:1 GeO2:B2O3 = 5:1 GeO2:B2O3 = 2:1 GeO2:B2O3 = 1:1 GeO2:B2O3 = 1:2 GeO2:B2O3 = 1:5 B2O3-BaO-Ga2O3 | 8.73 ± 0.22 8.42 ± 0.17 8.09 ± 0.23 7.52 ± 0.21 7.45 ± 0.19 6.72 ± 0.17 6.27 ± 0.16 5.92 ± 0.13 | 1.44 ± 0.21 1.60 ± 0.15 1.52 ± 0.22 1.35 ± 0.20 1.37 ± 0.18 1.11 ± 0.15 1.06 ± 0.14 1.18 ± 0.12 | 1.33 ± 0.14 1.03 ± 0.10 1.40 ± 0.14 1.29 ± 0.13 1.36 ± 0.12 1.87 ± 0.10 1.65 ± 0.10 1.81 ± 0.08 | 1.08 1.55 1.09 1.05 1.00 0.60 0.64 0.65 |
Transition | λ [nm] | GeO2-BaO-Ga2O3 | GeO2:B2O3 = 11:1 | GeO2:B2O3 = 5:1 | GeO2:B2O3 = 2:1 | ||||
---|---|---|---|---|---|---|---|---|---|
AJ [s−1] | β | AJ [s−1] | β | AJ [s−1] | β | AJ [s−1] | β | ||
4F9/2 → 6F1/2 6F3/2 6F5/2 6F7/2 6H5/2 6H7/2 6F9/2 6F11/2 6H9/2 6H11/2 6H13/2 6H15/2 | 1373 1275 1156 992 918 836 830 749 746 662 573 480 | >0.1 >0.1 15 6 4 19 11 36 25 125 1088 165 | - - 0.010 0.004 0.003 0.013 0.007 0.024 0.017 0.084 0.728 0.110 | >0.1 >0.1 13 4 3 17 10 32 23 108 976 125 | - - 0.010 0.003 0.002 0.013 0.008 0.024 0.018 0.082 0.745 0.095 | >0.1 >0.1 12 4 3 16 9 30 22 100 932 150 | - - 0.009 0.004 0.003 0.013 0.007 0.023 0.017 0.078 0.729 0.117 | >0.1 >0.1 11 4 3 15 8 26 19 88 818 132 | - - 0.010 0.004 0.003 0.013 0.007 0.023 0.017 0.078 0.728 0.117 |
Transition | λ [nm] | GeO2:B2O3 = 1:1 | GeO2:B2O3 = 1:2 | GeO2:B2O3 = 1:5 | B2O3-BaO-Ga2O3 | ||||
---|---|---|---|---|---|---|---|---|---|
AJ [s−1] | β | AJ [s−1] | β | AJ [s−1] | β | AJ [s−1] | β | ||
4F9/2 → 6F1/2 6F3/2 6F5/2 6F7/2 6H5/2 6H7/2 6F9/2 6F11/2 6H9/2 6H11/2 6H13/2 6H15/2 | 1373 1275 1156 992 918 836 830 749 746 662 573 480 | >0.1 >0.1 10 4 3 15 8 25 19 85 792 134 | - - 0.009 0.004 0.003 0.014 0.007 0.023 0.017 0.078 0.723 0.122 | >0.1 >0.1 9 4 3 15 7 23 18 76 743 167 | - - 0.008 0.004 0.003 0.014 0.007 0.022 0.016 0.071 0.698 0.157 | >0.1 >0.1 8 3 2 13 6 20 16 67 656 142 | - - 0.009 0.003 0.002 0.014 0.007 0.021 0.017 0.072 0.703 0.152 | >0.1 >0.1 7 3 2 13 6 19 15 63 625 151 | - - 0.008 0.003 0.002 0.014 0.007 0.021 0.017 0.070 0.691 0.167 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pisarski, W.A. Judd–Ofelt Analysis and Emission Properties of Dy3+ Ions in Borogermanate Glasses. Materials 2022, 15, 9042. https://doi.org/10.3390/ma15249042
Pisarski WA. Judd–Ofelt Analysis and Emission Properties of Dy3+ Ions in Borogermanate Glasses. Materials. 2022; 15(24):9042. https://doi.org/10.3390/ma15249042
Chicago/Turabian StylePisarski, Wojciech A. 2022. "Judd–Ofelt Analysis and Emission Properties of Dy3+ Ions in Borogermanate Glasses" Materials 15, no. 24: 9042. https://doi.org/10.3390/ma15249042
APA StylePisarski, W. A. (2022). Judd–Ofelt Analysis and Emission Properties of Dy3+ Ions in Borogermanate Glasses. Materials, 15(24), 9042. https://doi.org/10.3390/ma15249042