
Citation: Pisarski, W.A. Judd–Ofelt

Analysis and Emission Properties of

Dy3+ Ions in Borogermanate Glasses.

Materials 2022, 15, 9042. https://

doi.org/10.3390/ma15249042

Academic Editors: Vlassios

Likodimos and Wiesław Stręk
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Abstract: Borogermanate glasses singly doped with Dy3+ ions were synthesized and then studied
using the absorption and luminescence spectra. Spectroscopic changes of Dy3+ ions have been
examined for compositional-dependent glasses with various molar ratios GeO2:B2O3. In this work,
several spectroscopic parameters of Dy3+ ions were obtained experimentally and compared to the
calculated values from the Judd–Ofelt theory. Luminescence spectra measured for borogermanate
glasses consist of blue, yellow and red bands, which correspond to 4F9/2 → 6H15/2, 4F9/2 → 6H13/2

and 4F9/2 → 6H11/2 transitions of Dy3+, respectively. Luminescence lifetimes for the 4F9/2 excited
state are reduced, whereas the stimulated emission cross-sections for the most intense 4F9/2→ 6H13/2

yellow transition of Dy3+ increase with increasing GeO2 and decreasing B2O3 concentrations in
glass-hosts. Quantum efficiency of the 4F9/2 (Dy3+) excited state is nearly independent on molar
ratios GeO2:B2O3. Attractive spectroscopic properties related to the 4F9/2 → 6H13/2 transition of
Dy3+ ions are found for borogermanate glasses implying their potential utility for yellow laser action
and solid-state lighting technology.
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1. Introduction

Judd [1] and Ofelt [2] published their pioneering scientific works concerning the
absorption intensities of rare earths 60 years ago. Based on the Judd–Ofelt (J-O) framework,
several spectroscopic parameters for the optically active ions from the lanthanide series can
be determined, which are really important from the optical and laser points of view. The
most important of which are the radiative transition probability, the luminescence branching
ratio and the radiative lifetime for the upper laser state of rare earth ions. The radiative
transition probability and spectral linewidth for luminescent transition of rare earth ions can
be used to calculate the peak stimulated emission cross-section, whereas measured emission
lifetime and radiative lifetime calculated from the J-O framework are usually applied to
estimate the quantum efficiency of the excited state. As a result, many glass matrices doped
with rare earths can be quite well evaluated for a variety of possible applications such as
for optical components and devices. Therefore, the J–O theory made a huge contribution to
the development of optical and laser glasses in modern photonics. Since then, numerous
published papers have been devoted to the study of glasses, glass-ceramics and other
inorganic compounds singly or doubly doped with rare earth ions [3–8] using the theory
on the intensities of 4f-4f electronic transitions introduced by Judd and Ofelt in 1962. In
particular, the Judd–Ofelt analysis was performed for trivalent Nd3+ [9–17], Er3+ [18–30],
Sm3+ [31–35], Pr3+ [36–40], Tm3+ [41–44], Ho3+ [45–50] and Dy3+ [51–58] ions in various
inorganic glasses. The later trivalent rare earth ions, i.e., Dy3+ ions, were successfully used
as an optical probe to study the luminescence behavior of inorganic glasses [59]. Recently,
systematic investigations indicate that dysprosium doped glasses are excellent candidates
for solid-state yellow lasers, white LEDs and other photonic device applications [60–63].
Their luminescence properties depend strongly on glass-network-modifiers [64], excitation
wavelength and activator concentration [65].
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In this work, the influence of glass-network-formers on the spectroscopic properties
of dysprosium ions in borogermanate glasses has been examined in detail. Previous
studies revealed that borogermanate glass belongs to amorphous systems with extremely
different glass-network-formers B2O3 and GeO2, influencing the spectroscopic properties
of Cr3+ and Eu3+ [66]. Further investigations revealed that borogermanate glasses are
suitable to fabricate CsPbBr3−xIx quantum dots with tunable visible emissions ranging
from 577 nm to 672 nm [67]. In addition, they are able to accommodate rare earth ions. Thus,
borogermanate glasses singly [68] and doubly [69] doped with rare earths are promising
for luminescence applications. In recent years, borogermanate glass doped with Dy3+ has
also been studied, but luminescence properties were analyzed as a function of activator
content. Gökçe and Koçyiğit [70] suggest that Dy3+ doped gadolinium borogermanate
glass matrix with the following composition 30B2O3-40GeO2-(30-x)Gd2O3-xDy2O3 (where
x = 0.25, 0.5, 1) presents excellent luminescence properties and can be used for laser and
white LED applications. Numerous works published in recent years are concerned with
glasses and their spectroscopic properties varying with activator (Dy3+) content [71–81].
These aspects have been discussed along with the reported Dy3+ doped glass systems
in an excellent paper published last year [82]. However, Dy3+-doped glasses have not
been examined often as a function of chemical composition and the spectroscopic results
are less documented in the literature. Previous studies for compositional-dependent
germanosilicate glasses demonstrate that the intensities of emission bands are the largest
for glass samples with the molar ratio GeO2:SiO2 = 3:1 and the optimal concentration of
Dy3+ ions equal to 0.5 mol% [83]. It was also confirmed for zinc aluminoborosilicate glasses,
where luminescence quenching is observed beyond 0.5 mol% Dy3+ ions suggesting the
presence of an energy-transfer process through cross-relaxation channels [84].

This paper is concerned with Dy3+-doped borogermanate glasses and their emis-
sion properties varying with glass-host composition. Absorption and emission properties
have been analyzed for glass samples, where the molar ratios of glass-network-formers
GeO2:B2O3 are changed significantly and the activator concentration is equal to 0.5 mol%
Dy3+. In particular, several spectroscopic parameters for Dy3+ ions were obtained experi-
mentally and compared with theoretical values calculated from the J–O theory.

2. Materials and Methods

Borogermanate glasses doped with Dy3+ ions with the following composition given in
molar%: (60-x)GeO2-xB2O3-30BaO-9.5Ga2O3-0.5Dy2O3 (x = 0, 5, 10, 20, 30, 40, 50, 60) were
prepared previously and details are given in Ref. [85]. For better clarity, glass codes and
chemical compositions of the studied samples varying with glass formers GeO2 and B2O3
marked in bold are shown in Table 1.

Table 1. Glass codes and chemical compositions for glass samples doped with Dy3+ ions.

No Glass Code Chemical Composition [mol%]

(1) GeO2-BaO-Ga2O3 60GeO2-30BaO-9.5Ga2O3-0.5Dy2O3
(2) GeO2:B2O3 = 11:1 55GeO2-5B2O3-30BaO-9.5Ga2O3-0.5Dy2O3
(3) GeO2:B2O3 = 5:1 50GeO2-10B2O3-30BaO-9.5Ga2O3-0.5Dy2O3
(4) GeO2:B2O3 = 2:1 40GeO2-20B2O3-30BaO-9.5Ga2O3-0.5Dy2O3
(5) GeO2:B2O3 = 1:1 30GeO2-30B2O3-30BaO-9.5Ga2O3-0.5Dy2O3
(6) GeO2:B2O3 = 1:2 20GeO2-40B2O3-30BaO-9.5Ga2O3-0.5Dy2O3
(7) GeO2:B2O3 = 1:5 10GeO2-50B2O3-30BaO-9.5Ga2O3-0.5Dy2O3
(8) B2O3-BaO-Ga2O3 60B2O3-30BaO-9.5Ga2O3-0.5Dy2O3

Glass samples were synthesized using a melt-quenching technique. Starting compo-
nents of high purity 99.99% (Aldrich Chemical Co., St. Louis, MO, USA) were used for glass
synthesis. All oxide components were mixed in an agate mortar for homogenization. Then,
glass batches were placed in an Al2O3 crucible and melted at temperature T = 1250 ◦C
for t = 45 min in an electric furnace. The received glass samples were cooled to room
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temperature and then polished for optical measurements. Photographs of the Dy3+ doped
glass samples are shown in Figure 1.
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Figure 1. Photographs of the Dy3+ doped glass samples: GeO2-BaO-Ga2O3 (1), GeO2:B2O3 = 11:1 (2),
GeO2:B2O3 = 5:1 (3), GeO2:B2O3 = 2:1 (4), GeO2:B2O3 = 1:1 (5), GeO2:B2O3 = 1:2 (6), GeO2:B2O3 = 1:5
(7) and B2O3-BaO-Ga2O3 (8).

The refractive indices of glass series were determined using the Metricon 2010 prism
coupler at a wavelength of 632.8 nm. The optical absorption spectra measurements were
performed using the UV-VIS-NIR spectrophotometer (Cary 5000, Agilent Technology, Santa
Clara, CA, USA). The emission spectra and decays were recorded using laser equipment,
which consists of a Photon Technology International (PTI) Quanta-Master 40 (QM40)
UV/VIS Steady State Spectrofluorometer (Photon Technology International, Birmingham,
NJ, USA) with a xenon lamp as an excitation source, Nd:YAG laser (Opotek Opolette
355 LD, OPOTEK, Carlsband, CA, USA) with a tunable pulsed optical parametric oscillator,
double 200 mm monochromator and multimode UVVIS PMT R928 detector (PTI Model
914). Resolution for emission spectra measurements was 0.1 nm, whereas decays were
measured with an accuracy of 1 µs.

3. Theoretical Background

The measured oscillator strengths of transitions were obtained from the absorption
bands of Dy3+ ions. They were estimated by measuring the areas under the absorption
bands of Dy3+ ions using the equation:

Pmeas = 4.318× 10−9
∫
ε(ν)dν (1)

where:
∫
ε(ν) represents the area under the absorption line and ε(ν) = A/(c× l), A indicates

the absorbance, c is the concentration of the Dy3+ ion (in mol × l−1) and l denotes the
optical path length. The theoretical oscillator strengths for each absorption transition of
Dy3+ ions were calculated using the Judd–Ofelt theory [1,2]. The theoretical oscillator
strength is defined as follows:

Pcalc =
8π2mc(n2 + 2)2

3hλ(2J + 1)·9n
× ∑

t=2,4,6
Ωt(< 4fNJ‖Ut‖4fNJ′ >)

2
(2)

where λ denotes the mean wavelength of each transition, whereas m, c, h and n are the
mass of the electron, the velocity of light, the Planck constant and the refractive index of the
medium, respectively. In this relation, ‖Ut‖2 represents the square of the matrix elements
of the unit tensor operator Ut. The values of ‖Ut‖2 used for Dy3+ were adopted from
Ref. [86]. The theoretical oscillator strengths were compared to the experimental values
obtained from the optical absorption spectra of Dy3+ ions in borogermanate glasses and
the phenomenological intensity parameters Ωt (where t = 2, 4, 6) were determined. The fit
quality was expressed by the magnitude of the root-mean-square deviation. It was defined
by rms = Σ (Pmeas − Pcalc)2. These three Judd–Ofelt intensity parameters Ωt (t = 2, 4, 6)
were used to calculate the radiative transition probabilities, the luminescence branching
ratios and the radiative lifetimes. The radiative transition probabilities AJ for the excited
states of Dy3+ ions were calculated using the relation given below:
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AJ =
64π4e2

3h(2J + 1)λ3 ×
n(n2 + 2)2

9
× ∑

t=2,4,6
Ωt(< 4fNJ‖Ut‖4fNJ′ >)

2
(3)

The luminescence branching ratio β is related to the relative intensities of transitions
from the excited state to all terminal states of Dy3+ ions.

β =
AJ

∑
i

AJi
(4)

The radiative lifetime τrad is the inverse of the total radiative transition probability
(the sum of the AJ terms). Its value was compared to the experimental lifetime received
from the luminescence decay curve. Both calculated and measured lifetimes were applied
to determine the quantum efficiency of an excited state η. The appropriate relations are
given below:

τrad =
1

∑
i

AJi
=

1
AT

(5)

η =
τm

τrad
× 100% (6)

Finally, the emission linewidth ∆λ referred as full width at half maximum (FWHM)
and the radiative transition probability AJ were successfully used to calculate the peak
stimulated emission cross-section σem using the following expression:

σem =
λ4

p

8πcn2∆λ
AJ (7)

where λp is the peak emission wavelength for the electronic transition of Dy3+.
All theoretical and experimental spectroscopic parameters for Dy3+ ions in the studied

borogermanate glasses are summarized in Table 2.

Table 2. Theoretical and experimental spectroscopic parameters for Dy3+ in borogermanate glasses.

Parameters Symbols Units

Theoretical oscillator strength Pcalc -
Measure oscillator strength Pmeas -
Judd–Ofelt intensity parameters Ωt (t = 2, 4, 6) 10−20 cm2

Spectroscopic quality parameter χ (Ω4/Ω6) -
Radiative transition probability AJ s−1

Total radiative transition probability AT s−1

Luminescence branching ratio β %
Radiative lifetime τrad µs
Measured lifetime τmeas µs
Quantum efficiency η %
Peak emission wavelength λp nm
Emission linewidth ∆λ nm
Full width at half maximum FWHM nm
Peak stimulated emission cross-section σem 10−21 cm2

4. Results and Discussion

Judd–Ofelt analysis of Dy3+ ions in mixed borogermanate glasses with various GeO2:B2O3
molar ratios equal to 11:1, 5:1, 2:1, 1:1, 1:2 and 1:5 was carried out. Theoretical and ex-
perimental results were compared to GeO2-BaO-Ga2O3 and B2O3-BaO-Ga2O3 glasses.
Absorption and emission properties have been examined for glass samples, where the
concentration of Dy3+ ions was the same (0.5 mol%). Firstly, the absorption spectra mea-
surements for Dy3+ ions in borogermanate glasses were carried out at room temperature.



Materials 2022, 15, 9042 5 of 18

The absorption spectra of borogermanate glasses doped with Dy3+ ions were measured in
the UV-visible and near-infrared spectral ranges, respectively. The spectra consist of inho-
mogeneously broadened absorption bands characteristic for 4f9-4f9 electronic transitions of
Dy3+. The absorption bands correspond to transitions originating from the 6H15/2 ground
state to the following excited states: 6H11/2, 6F11/2, 6F9/2, 6F7/2, 6F3/2, 4F9/2, 4I15/2, 4G11/2,
4I13/2, 4F7/2, (4M19/2+4D3/2+6P5/2), 6P7/2 and 6P3/2. The later transition, i.e., 6H15/2 →
6P3/2 transition, is clearly visible for GeO2-BaO-Ga2O3 glass contrary to B2O3-BaO-Ga2O3
glass. For mixed borogermanate glasses, the 6H15/2 → 6P3/2 transition of Dy3+ lies on
the absorption edge. This indicates that the absorption edge is shifted to longer wave-
lengths from GeO2-BaO-Ga2O3 glass via mixed B2O3-GeO2-BaO-Ga2O3 compositions to
B2O3-BaO-Ga2O3 glass, respectively. The absorption spectra are presented in Figure 2.
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Figure 2. Absorption spectra for Dy3+ ions in borogermanate glasses with various molar ratios
GeO2:B2O3 compared to GeO2-BaO-Ga2O3 and B2O3-BaO-Ga2O3 glasses. The spectra were measured
in the UV-visible (a) and near-infrared (b) spectral ranges.

From the optical absorption spectra, the experimental oscillator strengths for Dy3+

ions have been determined. Owing to the standard procedure, the x-axes of absorption
spectra were converted to wavenumbers (given in cm−1). In the next step, the baseline
was fitted individually to each absorption band. The integrated areas of absorption bands
were calculated. The intensities of absorption lines of Dy3+ ions presented in Figure 2 were
estimated by measuring the areas under the bands, and then applied to determine the
experimental oscillator strengths using relation (1). The commercially available software
OriginPro was used during the calculation procedure.

The theoretical oscillator strengths for each transition of Dy3+ ions were calculated
from the J–O framework (Part 3) using relation (2). In order to perform the analysis, the
refractive index of the medium was used for calculations. The refractive index is changed



Materials 2022, 15, 9042 6 of 18

from 1.736 for GeO2-BaO-Ga2O3 glass to 1.605 for B2O3-BaO-Ga2O3 glass. The refractive
indices for the studied glass samples are schematized in Figure 3.
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Figure 3. The refractive indices for borogermanate glasses.

The experimental oscillator strengths from the absorption spectra and theoretical
oscillator strengths were compared. They are shown in Tables 3 and 4.

Table 3. Measured and calculated oscillator strengths (P × 10−6) for Dy3+ ions in GeO2-BaO-Ga2O3

glass and mixed borogermanate glasses with GeO2:B2O3 = 11:1, 5:1 and 2:1.

Levels
Energy
[cm−1]

GeO2-BaO-Ga2O3 GeO2:B2O3 = 11:1 GeO2:B2O3 = 5:1 GeO2:B2O3 = 2:1

Pmeas Pcalc Pmeas Pcalc Pmeas Pcalc Pmeas Pcalc
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6F11/2
6F9/2
6F7/2
6F3/2
4F9/2
4I15/2
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4F7/2,4I13/2

4M19/2,4D3/2,6P5/2
6P7/2

6040
7960
9300

11,290
13,450
21,200
22,200
23,600
25,900
27,500
28,700

1.260
8.220
1.580
1.410
0.090
0.150
0.330
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0.730
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1.109
8.240
1.783
1.391
0.117
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2.364

1.060
8.150
1.500
1.260
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0.330
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0.650
3.200

0.980
8.161
1.677
1.168
0.092
0.087
0.311
0.069
0.597
0.754
2.648

1.190
7.600
1.500
1.580
0.100
0.080
0.310
0.065
0.750
0.720
2.910

1.089
7.613
1.748
1.417
0.122
0.107
0.357
0.057
0.573
0.960
2.157

1.120
6.980
1.470
1.310
0.100
0.070
0.350
0.090
0.900
0.700
2.770

0.987
6.998
1.651
1.298
0.110
0.098
0.322
0.057
0.546
0.871
2.160
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Table 4. Measured and calculated oscillator strengths (P × 10−6) for Dy3+ ions in B2O3-BaO-Ga2O3

glass and mixed borogermanate glasses with GeO2:B2O3 = 1:1, 1:2 and 1:5.

Levels
Energy
[cm−1]

GeO2:B2O3 = 1:1 GeO2:B2O3 = 1:2 GeO2:B2O3 = 1:5 B2O3-BaO-Ga2O3

Pmeas Pcalc Pmeas Pcalc Pmeas Pcalc Pmeas Pcalc

6H11/2
6F11/2
6F9/2
6F7/2
6F3/2
4F9/2
4I15/2

4G11/2
4F7/2,4I13/2

4M19/2,4D3/2,6P5/2
6P7/2

6040
7960
9300

11,290
13,450
21,200
22,200
23,600
25,900
27,500
28,700

1.160
6.850
1.650
1.140
0.140
0.130
0.350
0.075
0.750
0.770
2.470

1.000
6.871
1.690
1.346
0.115
0.102
0.328
0.056
0.551
0.906
2.160

1.170
6.120
1.720
1.860
0.100
0.090
0.360
0.070
0.800
0.870
2.120

1.137
6.125
1.867
1.699
0.155
0.130
0.386
0.046
0.549
1.186
1.745

1.120
5.600
1.580
1.400
0.100
0.080
0.340
0.065
0.750
0.880
1.970

1.004
5.615
1.659
1.481
0.134
0.113
0.339
0.043
0.496
1.029
1.637

1.090
5.390
1.740
1.650
0.160
0.100
0.330
0.085
0.810
0.740
2.000

1.038
5.397
1.810
1.612
0.146
0.123
0.353
0.046
0.531
1.117
1.800

The main calculation process is related to three phenomenological Judd–Ofelt intensity
parameters Ωt (t = 2, 4, 6), which were obtained by comparison of the experimental
oscillator strengths from the absorption spectra with the theoretical oscillator strengths
from Equation (2) of the Judd–Ofelt framework (Part 3) using the fitting procedure. The
quality of the fit shown in Tables 3 and 4 expressed by the rms deviation defined by
Σ(Pmeas − Pcalc)2 (see Part 3) is quite good. The rms deviations for the studied glass
systems varying with GeO2/B2O3 molar ratios are in the range 0.23–0.58 (×10−6). The
error is within the acceptable range compared to similar glass doped with Dy3+ [70], which
was studied using the Judd–Ofelt framework. The three Judd–Ofelt intensity parameters Ωt
(t = 2, 4, 6) are necessary to calculate some spectroscopic parameters such as the radiative
transition probabilities and the luminescence branching ratios, and then the radiative
lifetimes, the quantum efficiencies of excited states and the peak stimulated emission cross-
sections for electronic transitions of Dy3+ ions. The three Judd–Ofelt intensity parameters
Ωt (t = 2, 4, 6) for Dy3+ ions in borogermanate glasses are given in Table 5.

Table 5. Judd–Ofelt intensity parameters for Dy3+ ions in the studied glass systems.

Glasses
Judd–Ofelt Intensity Parameters Ωt (t = 2, 4, 6) [in 10−20 cm2 Units]

χ (Ω4/Ω6)
Ω2 Ω4 Ω6

GeO2-BaO-Ga2O3
GeO2:B2O3 = 11:1
GeO2:B2O3 = 5:1
GeO2:B2O3 = 2:1
GeO2:B2O3 = 1:1
GeO2:B2O3 = 1:2
GeO2:B2O3 = 1:5
B2O3-BaO-Ga2O3

8.73 ± 0.22
8.42 ± 0.17
8.09 ± 0.23
7.52 ± 0.21
7.45 ± 0.19
6.72 ± 0.17
6.27 ± 0.16
5.92 ± 0.13

1.44 ± 0.21
1.60 ± 0.15
1.52 ± 0.22
1.35 ± 0.20
1.37 ± 0.18
1.11 ± 0.15
1.06 ± 0.14
1.18 ± 0.12

1.33 ± 0.14
1.03 ± 0.10
1.40 ± 0.14
1.29 ± 0.13
1.36 ± 0.12
1.87 ± 0.10
1.65 ± 0.10
1.81 ± 0.08

1.08
1.55
1.09
1.05
1.00
0.60
0.64
0.65

It is generally accepted that the phenomenological Judd–Ofelt intensity parameter Ω2
reflects the asymmetry of the environment of trivalent dysprosium ions. In other words,
the values of Ω2 exhibit the degree of covalency between Dy3+ ions and their nearest
surroundings. For the studied glass systems, the Judd–Ofelt parameter Ω2 is reduced from
8.73 × 10−20 cm2 for GeO2-BaO-Ga2O3 glass to 5.92 × 10−20 cm2 for B2O3-BaO-Ga2O3
glass suggesting more ionic bonding between Dy3+ ions and ligands with increasing B2O3
concentration. The results are in good agreement with values of Ω2 calculated for similar
germanate or germanate-tellurite glasses based on Na2O-MgO-Al2O3-GeO2 composition
(Ω2 = 8.62 × 10−20 cm2) referred to as NMAG [87] and Na2O-ZnO-PbO-GeO2-TeO2 com-
position (Ω2 = 7.34 × 10−20 cm2) referred to as NZPGT [88] as well as obtained for similar
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borate glasses based on the B2O3-CaF2-CaO-BaO-Al2O3 system (Ω2 = 5.98 × 10−20 cm2)
referred to as CFB [89] and B2O3-ZnO-Al2O3-Bi2O3 (Ω2 = 6.20 × 10−20 cm2) referred to as
ZnAlBiB [90]. Following that, the Judd–Ofelt intensity parameters Ω4 and Ω6 are structure-
dependent, i.e., the parameter Ω4 describes the viscosity of the glass medium while the
parameter Ω6 is connected with the rigidity of the glass medium. Interestingly, GeO2-
BaO-Ga2O3 glass and borogermanate glasses with lower B2O3 content (GeO2:B2O3 from
11:1 to 2:1) exhibit Ω4 > Ω6, whereas B2O3-BaO-Ga2O3 glass and borogermanate glasses
with relatively higher B2O3 content (GeO2:B2O3 = 1:2 and 1:5) possess Ω4 < Ω6 (Table 3).
The same situation was observed earlier for germanate, germanate-tellurite and tellu-
rite glasses [87,87,91], where Ω4 > Ω6 contrary to borate or phosphate glasses [90,92,93],
where Ω4 < Ω6. However, further investigations for borate-based glasses suggest that
Ω4 < Ω6 can be changed to Ω4 > Ω6 with decreasing Dy3+ concentration [94]. For glass
with GeO2:B2O3 = 1:1 both the Judd–Ofelt parameters Ω4 and Ω6 are nearly the same as
Dy3+ doped silicate glass based on SiO2–Al2O3–PbF2–AlF3–YbF3–DyF3 composition [95].

It was concluded that the intensity parameters Ω4 and Ω6 depend not only on the
viscosity and rigidity, but they are also affected by the acidity and basicity of the glass-host,
i.e., the highest Ω4 and Ω6 indicates the lowest basicity of the glass and the highest hard-
ness [83]. In particular, the parameter Ω6 is reduced systematically with increasing basicity
and decreasing rigidity of the glass [96]. The calculation results given in Table 5 clearly
indicate that the intensity parameter Ω6 increases from GeO2-BaO-Ga2O3 glass to B2O3-
BaO-Ga2O3 glass. The values of Ω6 are larger for glass samples containing higher B2O3
concentrations suggesting their lower basicity and higher rigidity. Further studies suggest
that the Judd–Ofelt intensity parameters Ω4 and Ω6 not only influence the physicochemical
properties of glasses but also strongly affect the radiative transition probabilities as a result
of the interaction between trivalent dysprosium ions and their nearest environments [97].

Following that, the spectroscopic quality parameter χ referred to as the magnitude of
Ω4/Ω6 belongs to important factors characterizing the optical potential of the currently
prepared glass. It was presented and discussed in detail for several glass systems doped
with Dy3+ ions [91]. For borogermanate glass systems, the values of χ are relatively
large, which demonstrates quite well the intense luminescent transitions of Dy3+ ions.
Luminescence studies for multicomponent glass based on B2O3–Bi2O3–SrO–Al2O3–PbO–
Dy2O3 revealed that the spectroscopic quality factor χ ≥ 0.50, can be suggested as a good
optical candidate for the lasing action of dysprosium ions [80].

The three phenomenological J–O intensity parameters Ωt (t = 2, 4, 6) were applied
to calculate the radiative transition probabilities and the luminescence branching ratios
using the appropriate Relations (3) and (4) given in Part 3. The results are summarized
in Tables 6 and 7. The total radiative transition probability ATOTAL referred to as the sum
of the AJ terms from the 4F9/2 excited state of dysprosium ions increases with increasing
GeO2 concentration. The value of ATOTAL changed from 904 s−1 for B2O3-BaO-Ga2O3
glass to 933 s−1 (GeO2:B2O3 = 1:5), 1065 s−1 (GeO2:B2O3 = 1:2), 1095 s−1 (GeO2:B2O3 = 1:1),
1124 s−1 (GeO2:B2O3 = 2:1), 1278 s−1 (GeO2:B2O3 = 5:1), 1311 s−1 (GeO2:B2O3 = 11:1)
and 1495 s−1 for GeO2-BaO-Ga2O3 glass, respectively. In all cases, the luminescence
branching ratio is the highest for the 4F9/2 → 6H13/2 electronic transition of Dy3+ ions at
573 nm. Its value changed from 69.1% to 74.5% depending on the chemical composition
of the glass-host. The calculation results suggest that the studied borogermanate glass
systems are promising for yellow emission independently on molar ratios GeO2:B2O3. The
luminescence spectra measurements confirm this hypothesis.
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Table 6. The radiative transition probabilities and luminescence branching ratios for Dy3+ ions in
GeO2-BaO-Ga2O3 glass and mixed borogermanate glasses with GeO2:B2O3 = 11:1, 5:1 and 2:1.

Transition λ [nm]
GeO2-BaO-Ga2O3 GeO2:B2O3 = 11:1 GeO2:B2O3 = 5:1 GeO2:B2O3 = 2:1

AJ [s−1] β AJ [s−1] β AJ [s−1] β AJ [s−1] β

4F9/2 →
6F1/2
6F3/2
6F5/2
6F7/2
6H5/2
6H7/2
6F9/2
6F11/2
6H9/2

6H11/2
6H13/2
6H15/2

1373
1275
1156
992
918
836
830
749
746
662
573
480

>0.1
>0.1
15
6
4

19
11
36
25

125
1088
165

-
-

0.010
0.004
0.003
0.013
0.007
0.024
0.017
0.084
0.728
0.110

>0.1
>0.1
13
4
3

17
10
32
23

108
976
125

-
-

0.010
0.003
0.002
0.013
0.008
0.024
0.018
0.082
0.745
0.095

>0.1
>0.1
12
4
3

16
9

30
22

100
932
150

-
-

0.009
0.004
0.003
0.013
0.007
0.023
0.017
0.078
0.729
0.117

>0.1
>0.1
11
4
3

15
8

26
19
88
818
132

-
-

0.010
0.004
0.003
0.013
0.007
0.023
0.017
0.078
0.728
0.117

Table 7. The radiative transition probabilities and luminescence branching ratios for Dy3+ ions in
B2O3-BaO-Ga2O3 glass and mixed borogermanate glasses with GeO2:B2O3 = 1:1, 1:2 and 1:5.

Transition λ [nm]
GeO2:B2O3 = 1:1 GeO2:B2O3 = 1:2 GeO2:B2O3 = 1:5 B2O3-BaO-Ga2O3

AJ [s−1] β AJ [s−1] β AJ [s−1] β AJ [s−1] β

4F9/2 →
6F1/2
6F3/2
6F5/2
6F7/2
6H5/2
6H7/2
6F9/2
6F11/2
6H9/2

6H11/2
6H13/2
6H15/2

1373
1275
1156
992
918
836
830
749
746
662
573
480

>0.1
>0.1
10
4
3

15
8

25
19
85

792
134

-
-

0.009
0.004
0.003
0.014
0.007
0.023
0.017
0.078
0.723
0.122

>0.1
>0.1

9
4
3

15
7

23
18
76
743
167

-
-

0.008
0.004
0.003
0.014
0.007
0.022
0.016
0.071
0.698
0.157

>0.1
>0.1

8
3
2

13
6

20
16
67

656
142

-
-

0.009
0.003
0.002
0.014
0.007
0.021
0.017
0.072
0.703
0.152

>0.1
>0.1

7
3
2

13
6

19
15
63
625
151

-
-

0.008
0.003
0.002
0.014
0.007
0.021
0.017
0.070
0.691
0.167

Figure 4 presents the luminescence spectra of Dy3+ ions in borogermanate glasses. The
spectra for glasses based on B2O3-BaO-Ga2O3 and GeO2-BaO-Ga2O3 are also indicated.
The emission spectra show three characteristic bands of Dy3+ ions located at blue, yellow
and red spectral range. These luminescence bands are attributed to 4F9/2 → 6H15/2 (blue),
4F9/2 → 6H13/2 (yellow) and 4F9/2 → 6H11/2 transitions of trivalent dysprosium. In previ-
ous work [85], the influence of glass former (GeO2), oxide (CaO/SrO/BaO) and fluoride
(CaF2/SrF2/BaF2) glass modifiers on spectral properties, the yellow-to-blue luminescence
intensity ratios and CIE coordinates of Dy3+ in borate-based glasses have been examined
in detail. The studies revealed that the CIE chromaticity coordinates (x, y) are changed
significantly with molar ratios GeO2:B2O3 in glass composition. The CIE coordinates are
changed from (x = 0.405, y = 0.452) to (x = 0.430, y = 0.472) with increasing GeO2 content,
which contributes to color modification of the borogermanate glass system from greenish
to yellowish. These experimental results are presented and discussed in the previously
published work [85]. The luminescent transitions of Dy3+ ions are indicated in the energy
level diagram shown in Figure 5.
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Figure 5. Energy level diagram for Dy3+ ions. Luminescent transitions are also indicated.

The luminescent results presented in Figure 4 indicate that the intensities are the
highest for yellow bands related to the 4F9/2 → 6H13/2 transition of Dy3+, independently
on GeO2:B2O3 ratios. In addition, the 4F9/2 → 6H13/2 transition of Dy3+ ions is so-called
hypersensitive transition, which follows the selection rules |S| = 0, |∆L|≤ 2 and |∆J| ≤ 2.
The emission intensities as well as the spectral profiles and positions are very sensitive
to even small changes of the nearest environment around dysprosium ions. The same
situation is observed for the absorption band centered near 1250 nm due to transition
originating from the 6H15/2 ground state to the 6F11/2 state. Figure 6 shows hypersensitive



Materials 2022, 15, 9042 11 of 18

absorption and emission transitions of Dy3+ varying with GeO2:B2O3 molar ratios. In order
to compare the spectral profile and position of hypersensitive transitions, the spectra were
normalized. Spectroscopic analysis indicates that the spectra are broader with increasing
B2O3 content. These effects are significantly stronger for absorption than emission bands.
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Figure 6. Hypersensitive absorption and emission transitions Dy3+ ions.

Further luminescent studies suggest that yellow-to-blue factor Y/B (Dy3+) due to the
ratio of the integrated emission intensities (4F9/2 → 6H13/2)/(4F9/2 → 6H15/2) is changed
significantly with molar ratios GeO2:B2O3 in glass composition. The values of Y/B (Dy3+)
are reduced from 4.22 for GeO2-BaO-Ga2O3 glass to 2.80 for B2O3-BaO-Ga2O3 glass with
increasing B2O3 concentration suggesting more ionic bonding between Dy3+ ions and
surrounding ligands. The results are in a good agreement with the calculated values of
the intensity parameters Ω2, which decrease from 8.73 for GeO2-BaO-Ga2O3 glass to 5.92
for B2O3-BaO-Ga2O3 glass indicating more ionic bonding in character. It was schematized
on Figure 7.
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Figure 7. Luminescence intensity ratio Y/B (on left) and the peak stimulated emission cross-section
for the 4F9/2 → 6H13/2 transition of Dy3+ ions in borogermanate glasses (on right).
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The same situation is also observed for the peak stimulated emission cross-section
calculated from Equation (7) in Part 3 for the 4F9/2 → 6H13/2 transition of Dy3+ at 573 nm,
which is decreased with increasing B2O3 content (Figure 7). The values of σem given in
10−21 cm2 are changed from 3.05 for GeO2-BaO-Ga2O3 glass to 2.63 (GeO2:B2O3 = 11:1), 2.54
(GeO2:B2O3 = 5:1), 2.25 (GeO2:B2O3 = 2:1), 2.22 (GeO2:B2O3 = 1:1), 2.13 (GeO2:B2O3 = 1:2),
1.99 (GeO2:B2O3 = 1:5) and 1.93 for B2O3-BaO-Ga2O3 glass, respectively.

From the series of the studied glass samples, the stimulated emission cross section
is the highest (σem = 3.05 × 10−21 cm2) for GeO2-BaO-Ga2O3 glass. Its value is compa-
rable to the one obtained for the 4F9/2 → 6H13/2 transition of Dy3+ ions in germanate-
tellurite glasses based on GeO2-TeO2-SrF2 composition (σem = 3.1 × 10−21 cm2) referred as
GTS [98] and Na2O-ZnO-PbO-GeO2-TeO2 composition (σem = 3.66 × 10−21 cm2) known as
NZPGT [88].

Finally, luminescence decays from the 4F9/2 state of Dy3+ ions have been analyzed in
detail. Decay curves for the 4F9/2 (Dy3+) state in borogermanate glasses were measured
under excitation 454 nm and monitoring emission wavelength 573 nm. The luminescence
decay curves for Dy3+ are presented in Figure 8. The obtained results clearly demonstrated
that decays are longer with increasing B2O3 concentration in glass composition.
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Based on decay curve measurements, luminescence lifetimes for the 4F9/2 state of Dy3+

ions were determined. Next, measured lifetimes were compared to the radiative lifetimes
(Equation (5), Part 3) calculated from the J–O theory. Both measured τm and radiative τrad
lifetimes were used to calculate quantum efficiency (Equation (6), Part 3). The measured
lifetimes and quantum efficiencies for the 4F9/2 state of Dy3+ varying with GeO2:B2O3
molar ratios are schematically shown in Figure 9.
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The 4F9/2 lifetime of Dy3+ ions in GeO2-BaO-Ga2O3 glass is close to 348 µs and its
value is comparable to the results (τm = 356 µs) obtained for lead germanate glass based on
PbO-Ga2O3-GeO2 [99]. The experimental values of τm for mixed borogermanate glasses
are equal to 352 µs (GeO2:B2O3 = 11:1), 367 µs (GeO2:B2O3 = 5:1), 407 µs (GeO2:B2O3 = 2:1),
424 µs (GeO2:B2O3 = 1:1), 452 µs (GeO2:B2O3 = 1:2), and 473 µs (GeO2:B2O3 = 1:5). The
4F9/2 lifetime of Dy3+ ions is the highest (τm = 513 µs) for B2O3-BaO-Ga2O3 glass. In
contrast to the dependences of luminescence intensity ratio Y/B and the peak stimulated
emission cross-section for the 4F9/2

® 6H13/2 transition (Figure 7), the luminescence lifetime
for the 4F9/2 state of Dy3+ increases with increasing B2O3 content. It is experimentally
evidenced that the non-radiative multiphonon relaxation probabilities of rare earth ions are
increased significantly with increasing phonon energy from GeO2 to B2O3. Glass based on
GeO2-BaO-Ga2O3 (~800 cm−1) has relatively smaller phonon energy than B2O3-BaO-Ga2O3
glass (~1400 cm−1). Thus, the measured lifetimes of rare earth ions are reduced from GeO2
to B2O3 because multiphonon relaxation probabilities become higher with increasing B2O3
content. For example, this situation is observed for Er3+ ions, where the energy separation
between the excited state 4I13/2 and next lower-lying ground state 4I15/2 is relatively small
and non-radiative multiphonon relaxation provides an important contribution to the total
relaxation process. The opposite effects are observed for other rare earth ions such as Tb3+,
Eu3+ or Dy3+, where the energy gaps between the interacting levels are relatively large and
non-radiative relaxation probabilities are negligibly small. Thus, luminescence lifetimes
4F9/2 (Dy3+) are nearly equal to radiative lifetimes calculated from the J–O theory and their
experimental values increase from GeO2-BaO-Ga2O3 glass to B2O3-BaO-Ga2O3 glass. It
was also confirmed earlier by the measurements of luminescence decay curves for rare
earth ions in heavy metal oxide glasses referred to as HMOG. Previously published work
clearly demonstrated that the dependence of experimental luminescence lifetimes on the
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phonon energies of HMOG glass systems is completely different for the 5D0 state of Eu3+

than for the 4I13/2 state of Er3+ [100].
Further studies indicate that the quantum efficiency of excited state 4F9/2 (Dy3+) is

almost unchanged with increasing B2O3 concentration. The quantum efficiency for the
4F9/2 state of Dy3+ in mixed borogermanate glasses seems to be 47 ± 1%, independently of
GeO2:B2O3 molar ratios. For GeO2-BaO-Ga2O3 glass (η = 52%) the quantum efficiency is
above 50%. The results obtained for borogermanate glasses singly doped with Dy3+ ions
suggest their potential luminescent applications in the yellow spectral range [71,101].

5. Conclusions

Borogermanate glasses doped with Dy3+ have been studied experimentally and the-
oretically using the Judd–Ofelt framework. Based on absorption and emission spectra
measurements, several spectroscopic parameters for Dy3+ ions were determined, such as
the measured and calculated oscillator strengths, the Judd–Ofelt intensity parameters, the
radiative transition probabilities, the luminescence branching ratios, the peak stimulated
emission cross-sections, the measured and radiative (calculated) luminescence lifetimes
and the quantum efficiencies of excited state. They have been examined as a function of
GeO2:B2O3 molar ratios in glass composition. The systematic investigations demonstrated
that the peak stimulated emission cross-sections for the most intense 4F9/2→ 6H13/2 yellow
transition of Dy3+ ions decrease, whereas the 4F9/2 luminescence lifetimes are enhanced
with increasing B2O3 concentration. The quantum efficiencies for the 4F9/2 state of Dy3+

ions are close to η = 47± 1% and their values are nearly independent of GeO2:B2O3 ratios. It
was suggested that the results for borogermanate glasses doped with Dy3+ are attractive for
yellow luminescence, providing an important contribution to the development of optical
glasses and celebrating the 60th anniversary of the Judd–Ofelt theory.
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