Nanoarchitectonics of Spherical Nucleic Acids with Biodegradable Polymer Cores: Synthesis and Evaluation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis of Azido-Terminated Poly(d,l-Lactide) (PLA-N3)
2.2.1. Synthesis of Bromo-Terminated Derivative (PLA-Br)
2.2.2. Nucleophilic Substitution of Alkyl Bromide Polymer Terminal Group with Azide
2.3. Synthesis of Azido-Terminated Poly(d,l-Lactic Acid)-co-Poly(2,2-Bis(azidomethyl) Trimethylene Carbonate) (N3-PLA-co-PAMTC)
2.3.1. Synthesis of Poly(d,l-Lactic Acid)-co-Poly(2,2-Bis(bromomethyl) Trimethylene Carbonate) (PLA-co-PBMTC)
2.3.2. Multi Azide-Functionalization of PLA-co-PBMTC Copolymer
2.4. Oligonucleotide Conjugation
2.5. Preparation of SNA-Micelles
2.6. Characterization Methods
2.7. MTT Assay
2.8. Monolayer Experiments
3. Results and Discussion
3.1. Azide-Functional (co)polymers Synthesis and Characterization
3.2. Oligonucleotide Conjugation and Spherical Nucleic Acids Physico-Chemical Characterization
3.3. In Vitro Evaluations of PLA-SNA and PLA-co-PC-SNA Spherical Nucleic Acids
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rosi, N.L.; Giljohann, D.A.; Thaxton, C.S.; Lytton-Jean, A.K.; Han, M.S.; Mirkin, C.A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030. [Google Scholar] [CrossRef] [PubMed]
- Meckes, B.; Banga, R.J.; Nguyen, S.T.; Mirkin, C.A. Enhancing the stability and immunomodulatory activity of liposomal spherical nucleic acids through lipid-tail DNA modifications. Small 2018, 14, 1702909. [Google Scholar] [CrossRef] [PubMed]
- Zheng, D.; Giljohann, D.A.; Chen, D.L.; Massich, M.D.; Wang, X.-Q.; Iordanov, H.; Mirkin, C.A.; Paller, A.S. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc. Natl. Acad. Sci. USA 2012, 109, 11975–11980. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, H.; Kang, R.S.; Bagnowski, K.; Yu, J.M.; Radecki, S.; Daniel, W.L.; Anderson, B.R.; Nallagatla, S.; Schook, A.; Agarwal, R.; et al. Targeting the IL-17 receptor using liposomal spherical nucleic acids as topical therapy for psoriasis. J. Investig. Dermatol. 2020, 140, 435–444. [Google Scholar] [CrossRef]
- Mirkin, C.A.; Letsinger, R.L.; Mucic, R.C.; Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609. [Google Scholar] [CrossRef]
- Chinen, A.B.; Guan, C.M.; Mirkin, C.A. Spherical nucleic acid nanoparticle conjugates enhance G-quadruplex formation and increase serum protein interactions. Angew. Chem. Int. Ed. 2015, 54, 527–531. [Google Scholar] [CrossRef] [Green Version]
- Rouge, J.L.; Sita, T.L.; Hao, L.; Kouri, F.M.; Briley, W.E.; Stegh, A.H.; Mirkin, C.A. Ribozyme–spherical nucleic acids. J. Am. Chem. Soc. 2015, 137, 10528–10531. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-S.; Lytton-Jean, A.K.; Hurst, S.J.; Mirkin, C.A. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett. 2007, 7, 2112–2115. [Google Scholar] [CrossRef] [Green Version]
- Rische, C.H.; Goel, A.; Radovic-Moreno, A.F.; Gryaznov, S.M. Antibacterial silver core spherical nucleic acids. Mater. Today Commun. 2016, 9, 30–40. [Google Scholar] [CrossRef] [Green Version]
- Cutler, J.L.; Zheng, D.; Xu, X.; Giljohann, D.A.; Mirkin, C.A. Polyvalent oligonucleotide iron oxide nanoparticle “click” conjugates. Nano Lett. 2010, 10, 1477–1480. [Google Scholar] [CrossRef]
- Zhang, C.; Macfarlane, R.J.; Young, K.L.; Choi, C.H.; Hao, L.; Auyeung, E.; Liu, G.; Zhou, X.; Mirkin, C.A. A general approach to DNA-programmable atom equivalents. Nat. Mater. 2013, 12, 741–746. [Google Scholar] [CrossRef] [PubMed]
- Young, K.L.; Scott, A.W.; Hao, L.; Mirkin, S.E.; Liu, G.; Mirkin, C.A. Hollow spherical nucleic acids for intracellular gene regulation based upon biocompatible silica shells. Nano Lett. 2012, 12, 3867–3871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mitchell, G.P.; Mirkin, C.A.; Letsinger, R.L. Programmed assembly of DNA functionalized quantum dots. J. Am. Chem. Soc. 1999, 121, 8122–8123. [Google Scholar] [CrossRef]
- Banga, R.J.; Chernyak, N.; Narayan, S.P.; Nguyen, S.T.; Mirkin, C.A. Liposomal spherical nucleic acids. J. Am. Chem. Soc. 2014, 136, 9866–9869. [Google Scholar] [CrossRef]
- Sprangers, A.J.; Hao, L.; Banga, R.J.; Mirkin, C.A. Liposomal spherical nucleic acids for regulating long noncoding RNAs in the nucleus. Small 2017, 13, 1602753. [Google Scholar] [CrossRef] [Green Version]
- Callmann, C.E.; Kusmierz, C.D.; Dittmar, J.W.; Broger, L.; Mirkin, C.A. Impact of liposomal spherical nucleic acid structure on immunotherapeutic function. ACS Cent. Sci. 2021, 7, 892–899. [Google Scholar] [CrossRef]
- Zhang, W.; Callmann, C.E.; Mirkin, C.A. Controlling the biological fate of liposomal spherical nucleic acids using tunable polyethylene glycol shells. ACS Appl. Mater. Interfaces 2021, 13, 46325–46333. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, Y.; Fullhart, P.; Mirkin, C.A. Reversible and chemically programmable micelle assembly with DNA block-copolymer amphiphiles. Nano Lett. 2004, 4, 1055–1058. [Google Scholar] [CrossRef]
- Zhang, C.; Hao, L.; Calabrese, C.; Zhou, Y.; Choi, C.H.; Xing, H.; Mirkin, C.A. Biodegradable DNA-brush block copolymer spherical nucleic acids enable transfection agent-free intracellular gene regulation. Small 2015, 11, 5360–5368. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Xing, H.; Gordiichuk, P.; Park, J.; Mirkin, C.A. PLGA Spherical nucleic acids. Adv. Mater. 2018, 30, 1707113. [Google Scholar] [CrossRef]
- Melamed, J.R.; Kreuzberger, N.L.; Goyal, R.; Day, E.S. Spherical nucleic acid architecture can Improve the efficacy of polycation-mediated siRNA delivery. Mol. Ther. Nucleic Acids 2018, 12, 207–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bakardzhiev, P.; Toncheva-Moncheva, N.; Mladenova, K.; Petrova, S.; Videv, P.; Moskova-Doumanova, V.; Topouzova-Hristova, T.; Doumanov, J.; Rangelov, S. Assembly of amphiphilic nucleic acid–polymer conjugates into complex superaggregates: Preparation, properties, and in vitro performance. Eur. Polym. J. 2020, 131, 109692. [Google Scholar] [CrossRef]
- Brodin, J.D.; Sprangers, A.J.; McMillan, J.R.; Mirkin, C.A. DNA-mediated cellular delivery of functional enzymes. J. Am. Chem. Soc. 2015, 137, 14838–14841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isoda, K.; Kanayama, N.; Fujita, M.; Takarada, T.; Maeda, M. DNA terminal mismatch-induced stabilization of polymer micelles from RAFT-generated poly(N-isopropylacrylamide)-DNA block copolymers. Chem. Asian J. 2013, 8, 3079–3084. [Google Scholar] [CrossRef] [PubMed]
- Ni, Q.; Zhang, F.; Zhang, Y.; Zhu, G.; Wang, Z.; Teng, Z.; Wang, C.; Yung, B.C.; Niu, G.; Lu, G.; et al. In situ shRNA synthesis on DNA-polylactide nanoparticles to treat multidrug resistant breast cancer. Adv. Mater. 2018, 30, 1705737. [Google Scholar] [CrossRef]
- Wang, D.; Lu, X.; Jia, F.; Tan, X.; Sun, X.; Cao, X.; Wai, F.; Zhang, C.; Zhang, K. Precision tuning of DNA- and poly(ethylene glycol)-based nanoparticles via coassembly for effective antisense gene regulation. Chem. Mater. 2017, 29, 9882–9886. [Google Scholar] [CrossRef]
- Lee, K.; Povlich, L.K.; Kim, J. Label-free and self-signal amplifying molecular DNA sensors based on bioconjugated polyelectrolytes. Adv. Funct. Mater. 2007, 17, 2580–2587. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Mok, H.; Lee, Y.; Park, T.G. Self-assembled siRNA–PLGA conjugate micelles for gene silencing. J. Control. Release 2011, 152, 152–158. [Google Scholar] [CrossRef]
- Fukimoto, S.; Kawade, M.; Kimura, K.; Akiyama, Y.; Kikuchi, A. Preparation of spherical nucleic acid nanoparticles containing a self-immolative poly(carbamate) core. Anal. Sci. 2021, 37, 781–784. [Google Scholar] [CrossRef]
- Elmowafy, E.M.; Tiboni, M.; Soliman, M.E. Biocompatibility, biodegradation and biomedical applications of poly(lactic acid)/poly(lactic-co-glycolic acid) micro and nanoparticles. J. Pharm. Investig. 2019, 49, 347–380. [Google Scholar] [CrossRef]
- Chen, W.; Meng, F.H.; Cheng, R.; Deng, C.; Feijen, J.; Zhong, Z.Y. Advanced drug and gene delivery systems based on functional biodegradable polycarbonates and copolymers. J. Control. Release 2014, 190, 398–414. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhong, Z.; Zhuo, R. Preparation of azido polycarbonates and their functionalization via click chemistry. Macromolecules 2011, 44, 1755–1759. [Google Scholar] [CrossRef]
- Stockert, J.C.; Horobin, R.W.; Colombo, L.L.; Blázquez-Castro, A. Tetrazolium salts and formazan products in Cell Biology: Viability assessment, fluorescence imaging, and labeling perspectives. Acta Histochem. 2018, 120, 159–167. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mladenova, K.; Petrova, S.D.; Georgiev, G.A.; Moskova-Doumanova, V.; Lalchev, Z.; Doumanov, J.A. Interaction of Bestrophin-1 with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in surface films. Colloids Surf. B 2014, 122, 432–438. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, T.D.; Petrova, S.D.; Mladenova, K.; Moskova-Doumanova, V.; Topouzova-Hristova, T.; Petseva, Y.; Mladenov, N.; Balashev, K.; Lalchev, Z.; Doumanov, J.A. Effects of Ca2+, Glu and GABA on hBest1 and composite hBest1/POPC surface films. Colloids Surf. B 2018, 161, 192–199. [Google Scholar] [CrossRef] [PubMed]
- Banga, R.J.; Meckes, B.; Narayan, S.P.; Sprangers, A.J.; Nguyen, S.T.; Mirkin, C.A. Cross-linked micellar spherical nucleic acids from thermoresponsive templates. J. Am. Chem. Soc. 2017, 139, 4278–4281. [Google Scholar] [CrossRef]
Azide-Functional (co)polymers | Spherical Nucleic Acids | |||||||
---|---|---|---|---|---|---|---|---|
Sample | DPLA a | DPBMTC a | Mna (g mol−1) | Mnb (g mol−1) | ÐMb | Sample | d c (nm) | PdI c |
PLA-N3 | 66 | - | 4800 | 6000 | 1.14 | PLA-SNA | 107 | 0.176 |
N3-PLA-co-PAMTC | 54 | 2 | 4500 | 4300 | 1.29 | PLA-co-PC-SNA | 113 | 0.196 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalinova, R.; Mladenova, K.; Petrova, S.; Doumanov, J.; Dimitrov, I. Nanoarchitectonics of Spherical Nucleic Acids with Biodegradable Polymer Cores: Synthesis and Evaluation. Materials 2022, 15, 8917. https://doi.org/10.3390/ma15248917
Kalinova R, Mladenova K, Petrova S, Doumanov J, Dimitrov I. Nanoarchitectonics of Spherical Nucleic Acids with Biodegradable Polymer Cores: Synthesis and Evaluation. Materials. 2022; 15(24):8917. https://doi.org/10.3390/ma15248917
Chicago/Turabian StyleKalinova, Radostina, Kirilka Mladenova, Svetla Petrova, Jordan Doumanov, and Ivaylo Dimitrov. 2022. "Nanoarchitectonics of Spherical Nucleic Acids with Biodegradable Polymer Cores: Synthesis and Evaluation" Materials 15, no. 24: 8917. https://doi.org/10.3390/ma15248917
APA StyleKalinova, R., Mladenova, K., Petrova, S., Doumanov, J., & Dimitrov, I. (2022). Nanoarchitectonics of Spherical Nucleic Acids with Biodegradable Polymer Cores: Synthesis and Evaluation. Materials, 15(24), 8917. https://doi.org/10.3390/ma15248917