Simulation of Far-Field Light Distribution of Micro-LED Based on Its Structural Parameters
Abstract
:1. Introduction
2. Design Concept
3. Results and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hsiang, E.L.; Li, Y.; He, Z.; Zhan, T.; Zhang, C.; Lan, Y.F.; Dong, Y.; Wu, S.T. Enhancing the efficiency of color conversion micro-LED display with a patterned cholesteric liquid crystal polymer film. Nanomaterials 2020, 10, 2430. [Google Scholar] [CrossRef]
- Fan, Z.Y.; Lin, J.Y.; Jiang, H.X. III-nitride micro-emitter arrays: Development and applications. J. Phys. D Appl. Phys. 2008, 41, 94001. [Google Scholar] [CrossRef]
- Wu, T.; Sher, C.-W.; Lin, Y.; Lee, C.-F.; Liang, S.; Lu, Y.; Huang Chen, S.-W.H.; Guo, W.; Kuo, H.-C.; Chen, Z. Mini-LED and micro-LED: Promising candidates for the next generation display technology. Appl. Sci. 2018, 8, 1557. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Tan, G.; Gou, F.; Li, M.-C.; Lee, S.-L.; Wu, S.-T. Prospects and challenges of mini-LED and micro-LED displays. J. Soc. Inf. Disp. 2019, 27, 387–401. [Google Scholar] [CrossRef]
- Park, H.J.; Cha, Y.J.; Kwak, J.S. Chip size-dependent light extraction efficiency for blue micro-LEDs. J. Korean Inst. Electr. Electron. Mater. Eng. 2019, 32, 47–52. [Google Scholar]
- Chang, K.; Yu, L.; Sang, J. P-5.13: Visual luminance uniformity and OD value calculation for direct type mini-LED backlight. SID Symp. Dig. Tech. Pap. 2019, 50 (Suppl. S1), 750–752. [Google Scholar] [CrossRef]
- Tan, G.; Huang, Y.; Li, M.C.; Lee, S.L.; Wu, S.T. High dynamic range liquid crystal displays with a mini-LED backlight. Opt. Express 2018, 26, 16572–16584. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Zheng, B.; Zheng, J.; Wu, L.; Yang, W.; Lin, Z.; Shen, P.; Li, J. 74–5: Late-news paper: High dynamic range Incell LCD with excellent performance. SID Symp. Dig. Tech. Pap. 2018, 49, 996–998. [Google Scholar] [CrossRef]
- Chen, E.; Guo, J.; Jiang, Z.; Shen, Q.; Ye, Y.; Xu, S.; Sun, J.; Yan, Q.; Guo, T. Edge/direct-lit hybrid mini-LED backlight with U-grooved light guiding plates for local dimming. Opt. Express 2021, 29, 12179–12194. [Google Scholar] [CrossRef]
- Zhu, R.; Luo, Z.; Chen, H.; Dong, Y.; Wu, S.T. Realizing Rec. 2020 color gamut with quantum dot displays. Opt. Express 2015, 23, 23680–23693. [Google Scholar] [CrossRef] [Green Version]
- Chen, E.; Xie, H.; Huang, J.; Miu, H.; Shao, G.; Li, Y.; Guo, T.; Xu, S.; Ye, Y. Flexible/curved backlight module with quantum-dots microstructure array for liquid crystal displays. Opt. Express 2018, 26, 3466–3482. [Google Scholar] [CrossRef]
- Peng, F.; Chen, H.; Gou, F.; Lee, Y.H.; Wand, M.; Li, M.C.; Lee, S.L.; Wu, S.T. Analytical equation for the motion picture response time of display devices. J. Appl. Phys. 2017, 121, 023108. [Google Scholar] [CrossRef] [Green Version]
- Tsai, C.C.; Wu, S.T. Broadband wide-angle polarization converter for LCD backlight. Appl. Opt. 2008, 47, 2882–2887. [Google Scholar] [CrossRef] [Green Version]
- Lu, Z.Z.J.; Lee, J.W., III; Kim, J.M. Wide-angle film diffuser. J. Soc. Inf. Disp. 2007, 15, 565–570. [Google Scholar] [CrossRef]
- Li, Z.; Guo, L.; Dai, K.; Liao, Y.; Ma, R.; Li, C.; Wang, Z.; Shao, X. P-11.2: The analysis of light-leakage under the large viewing angle for LCD. SID Symp. Dig. Tech. Pap. 2019, 50 (Suppl. S1), 910–911. [Google Scholar] [CrossRef]
- Gou, F.; Hsiang, E.L.; Tan, G.; Chou, P.T.; Li, Y.L.; Lan, Y.F.; Wu, S.T. Angular color shift of micro-LED displays. Opt. Express 2019, 27, A746–A757. [Google Scholar] [CrossRef]
- Lu, Z.; Tian, P.; Chen, H.; Baranowski, I.; Fu, H.; Huang, X.; Montes, J.; Fan, Y.; Wang, H.; Liu, X.; et al. Active tracking system for visible light communication using a GaN-based micro-LED and NRZ-OOK. Opt. Express 2017, 25, 17971–17981. [Google Scholar] [CrossRef] [Green Version]
- Han, H.V.; Lin, H.Y.; Lin, C.C.; Chong, W.C.; Li, J.R.; Chen, K.J.; Yu, P.; Chen, T.M.; Chen, H.M.; Lau, K.M.; et al. Resonant-enhanced full-color emission of quantum-dot-based micro LED display technology. Opt. Express 2015, 23, 32504–32515. [Google Scholar] [CrossRef] [Green Version]
- Gordon, J.; Harman, S. A graduated cylinder colorimeter: An investigation of path length and the Beer–Lambert law. J. Chem. Educ. 2002, 79, 611. [Google Scholar] [CrossRef]
- Zhu, L.; Ng, C.W.; Wong, N.; Wong, K.K.Y.; Lai, P.T.; Choi, H.W. Pixel-to-pixel fiber-coupled emissive micro-light-emitting diode arrays. IEEE Photonics J. 2009, 1, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Bayneva, I.I. Calculation and construction of optical elements of light devices. Dilemas Contemp. Educ. Política Valores 2019, 6, 58. [Google Scholar] [CrossRef]
- Guo, W.; Meng, H.; Chen, Y.; Sun, T.; Li, Y. Wafer-level monolithic integration of vertical micro-LEDs on glass. IEEE Photon. Technol. Lett. 2020, 32, 673–676. [Google Scholar] [CrossRef]
- Xu, F.F.; Tao, T.; Liu, B.; Wang, X.; Gong, M.G.; Zhi, T.; Pan, D.; Xie, Z.; Zhou, Y.; Zheng, Y.; et al. High-performance semi-polar inGaN/GaN green micro light-emitting-diodes. IEEE Photon. J. 2019, 12, 1–7. [Google Scholar] [CrossRef]
- Lelikov, Y.S.; Bochkareva, N.I.; Gorbunov, R.I.; Martynov, I.A.; Rebane, Y.T.; Tarkin, D.V.; Shreter, Y.G. Measurement of the absorption coefficient for light laterally propagating in light-emitting diode structures with In0. 2Ga0. 8N/GaN quantum wells. Semiconductors. 2008, 42, 1342–1345. [Google Scholar] [CrossRef]
- Du, Y.; Chang, B.; Fu, X.; Wang, X.; Wang, M. Electronic structure and optical properties of zinc-blende GaN. Optik 2012, 123, 2208–2212. [Google Scholar] [CrossRef]
- Zhao, G.Y.; Ishikawa, H.; Jiang, H.; Egawa, T.; Jimbo, T.; Umeno, M. Optical absorption and photoluminescence studies of n-type GaN. Jpn. J. Appl. Phys. 1999, 38, L993–L995. [Google Scholar] [CrossRef]
- Yang, D.; Thomas, M.E.; Tropf, W.J. Infrared refractive index of sapphire as a function of temperature. Window Dome Technol. Mater. 1999, 3705, 60–69. [Google Scholar]
- O’Mahony, D.; Hossain, M.N.; Justice, J.; Pelucchi, E.; O’Riordan, A. High index contrast optical platform using gallium phosphide on sapphire: An alternative to SOI. Silicon Photonics Photonic Integr. Circuits 2012, 8431, 294–301. [Google Scholar]
Material | Thickness | Refractive Index | Absorption Index [mm−1] |
---|---|---|---|
Semi-sphere micro-structure | Φ 3 µm | 1.70 | 0.004 |
Sapphire | 5 µm | 1.70 | 0.004 |
ITO | 300 nm | 1.50 | 0 |
p-GaN | 150 nm | 2.45 | 2.300 |
Active layer (MQW) | 100 nm | 2.54 | 25 |
n-GaN | 6.75 µm | 2.45 | 2.3 |
Material | Thickness (µm) | Refractive Index | Absorption Index [mm−1] |
---|---|---|---|
Semi-sphere micro-structure | Φ1–4 | 1.70 | 0.004 |
Material | Thickness | Refractive Index | Absorption Index [mm−1] |
---|---|---|---|
Semi-sphere micro-structure | Φ3 µm | 1.70 | 0.004 |
Al2O3 | 10–50 µm | 1.70 | 0.004 |
ITO | 300 nm | 1.50 | 0 |
p-GaN | 150 nm | 2.45 | 2.300 |
Active layer | 100 nm | 2.54 | 25 |
n-GaN | 6.75 µm | 2.45 | 2.300 |
Chip Size [μm] | Light Efficiency |
---|---|
10 | 0.653 |
20 | 0.590 |
30 | 0.605 |
40 | 0.597 |
50 | 0.572 |
Semi-Diameter of the Semi-Sphere Micro-Structure at a 10-μm-Thick (Al2O3)2 Film | Light Efficiency | Semi-Diameter of the Semi-Sphere Micro-Structure at a 30-μm-Thick (Al2O3)2 Film | Light Efficiency |
---|---|---|---|
0.5 | 0.543 | 0.5 | 0.633 |
1 | 0.518 | 1 | 0.656 |
1.5 | 0.653 | 1.5 | 0.653 |
2 | 0.644 | 2 | 0.644 |
(Al2O3)2 Film Thickness at a 0.5-μm Semi-Diameter of the Semi-Sphere Micro-Structure | Light Efficiency | (Al2O3)2 Film Thickness at a 1-μm Semi-Diameter of the Semi-Sphere Micro-Structure | Light Efficiency | (Al2O3)2 Film Thickness at a 1.5-μm Semi-Diameter of the Semi-Sphere Micro-Structure | Light Efficiency | (Al2O3)2 Film Thickness at a 2-μm Semi-Diameter of the Semi-Sphere Micro-Structure | Light Efficiency |
---|---|---|---|---|---|---|---|
10 | 0.543 | 10 | 0.518 | 10 | 0.653 | 10 | 0.644 |
30 | 0.633 | 30 | 0.656 | 30 | 0.653 | 30 | 0.644 |
50 | 0.617 | 50 | 0.655 | 50 | 0.652 | 50 | 0.644 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, W.; Chen, Y.; Wang, C.; Peng, X.; Tang, T.; Chen, Z. Simulation of Far-Field Light Distribution of Micro-LED Based on Its Structural Parameters. Materials 2022, 15, 8854. https://doi.org/10.3390/ma15248854
Wei W, Chen Y, Wang C, Peng X, Tang T, Chen Z. Simulation of Far-Field Light Distribution of Micro-LED Based on Its Structural Parameters. Materials. 2022; 15(24):8854. https://doi.org/10.3390/ma15248854
Chicago/Turabian StyleWei, Wei, Yiying Chen, Chenxi Wang, Xing Peng, Tang Tang, and Zhizhong Chen. 2022. "Simulation of Far-Field Light Distribution of Micro-LED Based on Its Structural Parameters" Materials 15, no. 24: 8854. https://doi.org/10.3390/ma15248854
APA StyleWei, W., Chen, Y., Wang, C., Peng, X., Tang, T., & Chen, Z. (2022). Simulation of Far-Field Light Distribution of Micro-LED Based on Its Structural Parameters. Materials, 15(24), 8854. https://doi.org/10.3390/ma15248854