Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity
Abstract
1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, H.; Tan, P.; Fu, S.; Tian, X.; Zhang, H.; Ma, X.; Gu, Z.; Luo, K. Preparation and application of pH-responsive drug delivery systems. J. Control Release 2022, 348, 206–238. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, W.; Li, J.; Hu, Z.; Wang, N.; Yu, X. A facile strategy to construct fluorescent pH-sensitive drug delivery vehicle. Polymer 2020, 197, 122496. [Google Scholar] [CrossRef]
- Yu, K.; Hai, X.; Yue, S.; Song, W.; Bi, S. Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem. Eng. J. 2021, 419, 129535. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Zhang, M.; Ma, L.; Yu, C.; Wei, H. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery. Acta Biomater. 2022, 144, 15–31. [Google Scholar] [CrossRef]
- Fouladi, F.; Steffen, K.J.; Mallik, S. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjug. Chem. 2017, 28, 857–868. [Google Scholar] [CrossRef] [PubMed]
- Zheng, A.; Zhu, S.; Zhou, J.; Wang, H. Dopamine- and citrate-mediated, rapid synthesis of hollow calcium carbonate nanoparticles: Their formation, metastability and transformation. Colloids Surfaces A 2022, 634, 128256. [Google Scholar] [CrossRef]
- Zheng, T.; Yi, H.; Zhang, S.; Wang, C. Preparation and formation mechanism of calcium carbonate hollow microspheres. J. Cryst. Growth 2020, 591, 125870. [Google Scholar] [CrossRef]
- Li, J.; Liu, M.; Qiu, Y.; Gan, Y.; Jiang, H.; Liu, B.; Wei, H.; Ma, N. Urchin-like hydroxyapatite/graphene hollow microspheres as pH-responsive bone drug carriers. Langmuir 2021, 37, 4137–4146. [Google Scholar] [CrossRef]
- Tang, Y.; Qian, W.; Zhang, B.; Liu, W.; Sun, X.; Ji, W.; Ma, L.; Zhu, D. None-loss target release of biomimetic CaCO3 nanocomposites for screening bioactive components and target proteins. ACS Appl. Bio Mater. 2021, 4, 651–659. [Google Scholar] [CrossRef]
- Yang, T.; Ao, Y.; Feng, J.; Wang, C.; Zhang, J. Biomineralization inspired synthesis of CaCO3-based DDS for pH-responsive release of anticancer drug. Mater. Today Commun. 2021, 27, 102256. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Zhu, Y.; Lv, X.; Wang, P.; Feng, L. pH-responsive nanomedicine co-encapsulated with erlotinib and chlorin e6 can enable effective treatment of triple negative breast cancer via reprogramming tumor vasculature. Chem. Eng. J. 2022, 437, 135305. [Google Scholar] [CrossRef]
- Tan, H.; Liu, Y.; Hou, N.; Cui, S.; Liu, B.; Fan, S.; Yu, G.; Han, C.; Zheng, D.; Li, W.; et al. Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta Biomater. 2022, 141, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Manabe, K.; Oniszczuk, J.; Michely, L.; Belbekhouche, S. pH- and redox-responsive hybrid porous CaCO3 microparticles based on cyclodextrin for loading three probes all at once. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125072. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xue, G.; Cao, W.; Zhang, Z.; Wang, C.; Li, X. Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery. Acta Biomater. 2021, 128, 474–485. [Google Scholar] [CrossRef]
- Eurov, D.A.; Kurdyukov, D.A.; Boitsov, V.M.; Kirilenko, D.A.; Shmakov, S.V.; Shvidchenko, A.V.; Smirnov, A.N.; Tomkovich, M.V.; Yagovkina, M.A.; Golubev, V.G. Biocompatible acid-degradable micro-mesoporous CaCO3:Si:Fe nanoparticles potential for drug delivery. Micropor. Mesopor. Mater. 2022, 333, 111762. [Google Scholar] [CrossRef]
- Dou, J.; Zhao, F.; Fan, W.; Chen, Z.; Guo, X. Preparation of nonspherical vaterite CaCO3 particles by flash nanoprecipitation technique for targeted and extended drug delivery. J. Drug Deliv. Sci. Technol. 2020, 57, 101768. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, R.; Su, H.; Xu, H.; Zhang, L.; Huang, D.; Liang, Z.; Hu, Y.; Zhao, L.; Lian, X. Synthesis and characterization of porous CaCO3 microspheres templated by yeast cells and the application as pH value-sensitive anticancer drug carrier. Colloids Surf. B Biointerfaces 2021, 199, 111545. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, T.; Dong, S.; Wu, T.; Jin, W.; Wu, Z.; Wang, B.; Liang, T.; Cao, L.; Yu, L. Industrially synthesized biosafe vaterite hollow CaCO3 for controllable delivery of anticancer drugs. Mater. Today Chem. 2022, 24, 100917. [Google Scholar] [CrossRef]
- Li, G.; Pei, M.; Liu, P. DOX-conjugated CQD-based nanosponges for tumor intracellular pH-triggered DOX release and imaging. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125258. [Google Scholar] [CrossRef]
- Lauth, V.; Loretz, B.; Lehr, C.-M.; Maas, M.; Rezwan, K. Self-assembly and shape control of hybrid nanocarriers based on calcium carbonate and carbon nanodots. Chem. Mater. 2016, 28, 3796–3803. [Google Scholar] [CrossRef]
- Najaflu, M.; Shahgolzari, M.; Bani, F.; Khosroushahi, A.Y. Green synthesis of near-infrared copper-doped carbon dots from alcea for cancer photothermal therapy. ACS Omega 2022, 7, 34573–34582. [Google Scholar] [CrossRef] [PubMed]
- Gautam, B.; Huang, M.-R.; Ali, S.A.; Yan, A.-L.; Yu, H.H.; Chen, J.-T. Smart thermoresponsive electrospun nanofibers with on-demand release of carbon quantum dots for cellular uptake. ACS Appl. Mater. Interfaces 2022, 14, 40322–40330. [Google Scholar] [CrossRef] [PubMed]
- Wolski, P. Molecular Dynamics simulations of the pH-dependent adsorption of doxorubicin on carbon quantum dots. Mol. Pharm. 2021, 18, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Guo, R.; Yuan, F.; Li, Y.; Li, X.; Zhang, Y.; Zhou, S.; Fan, L. Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells. J. Phys. Chem. Lett. 2020, 11, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, X.; Wang, F.; Yu, Q.; Chen, F.; Shen, D.; Yang, Z.; Wang, T.; Jiang, M.; Deng, T.; et al. Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy. Carbon 2021, 183, 789–808. [Google Scholar] [CrossRef]
- Ajikumar, P.K.; Wong, L.G.; Subramanyam, G.; Lakshminarayanan, R.; Valiyaveettil, S. Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Cryst. Growth Des. 2005, 5, 1129–1134. [Google Scholar] [CrossRef]
- Mihai, M.; Damaceanu, M.-D.; Aflori, M.; Schwarz, S. Calcium carbonate microparticles growth templated by an oxadiazole-functionalized maleic anhydride-co-N-vinyl-pyrrolidone copolymer, with enhanced pH stability and variable loading capabilities. Cryst. Growth Des. 2012, 12, 4479–4486. [Google Scholar] [CrossRef]
- Barhoum, A.; Rahier, H.; Abou-Zaied, R.E.; Rehan, M.; Dufour, T.; Hill, G.; Dufresne, A. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl. Mater. Interfaces 2014, 6, 2734–2744. [Google Scholar] [CrossRef]
- Yaseen, S.A.; Yiseen, G.A.; Li, Z. Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide. ACS Omega 2019, 4, 10160–10170. [Google Scholar] [CrossRef]
- Yang, T.; He, R.; Nie, G.; Wang, W.; Zhang, G.; Hu, Y.; Wu, L. Creation of hollow calcite single crystals with CQDs: Synthesis, characterization, and fast and efficient decontamination of Cd(II). Sci. Rep. 2018, 8, 17603. [Google Scholar] [CrossRef]
- Song, D.; Tian, J.; Xu, W.; Wen, H.; Wang, C.; Tang, J.; Zhang, J.; Guo, M. Optically induced insulator-to-semiconductor transition in fluorescent carbon quantum dots measured by terahertz time-domain spectroscopy. Carbon 2021, 174, 741–749. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Yin, L.; Liu, Y.; Guo, H.; Lai, J.; Han, Y.; Li, G.; Li, M.; Zhang, J.; et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, 6772. [Google Scholar] [CrossRef] [PubMed]
Concentration of GSH (mol/L) | Time (h) | Abs | Concentration of DOX (mg/L) | F (%) |
---|---|---|---|---|
0 | 4 | 0.034 | 3.695 | 9.73% |
8 | 0.064 | 6.853 | 18.05% | |
12 | 0.064 | 6.853 | 18.05% | |
16 | 0.074 | 7.905 | 20.82% | |
20 | 0.061 | 6.537 | 17.22% | |
24 | 0.067 | 7.168 | 18.88% | |
0.0001 | 4 | 0.071 | 7.589 | 20.38% |
8 | 0.075 | 8.011 | 21.51% | |
12 | 0.096 | 10.221 | 27.44% | |
16 | 0.099 | 10.537 | 28.29% | |
20 | 0.084 | 8.958 | 24.05% | |
24 | 0.067 | 7.168 | 19.25% | |
0.001 | 4 | 0.128 | 13.589 | 35.80% |
8 | 0.144 | 15.274 | 40.24% | |
12 | 0.193 | 20.432 | 53.83% | |
16 | 0.171 | 18.116 | 47.72% | |
20 | 0.189 | 20.011 | 52.72% | |
24 | 0.169 | 17.905 | 47.17% | |
0.005 | 4 | 0.399 | 42.116 | 73.50% |
8 | 0.413 | 43.589 | 76.07% | |
12 | 0.4 | 42.221 | 73.68% | |
16 | 0.439 | 46.326 | 80.85% | |
20 | 0.467 | 49.274 | 85.99% | |
24 | 0.444 | 46.853 | 81.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, F.; Chen, Q.; Zhang, X. Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity. Materials 2022, 15, 8768. https://doi.org/10.3390/ma15248768
Mo F, Chen Q, Zhang X. Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity. Materials. 2022; 15(24):8768. https://doi.org/10.3390/ma15248768
Chicago/Turabian StyleMo, Fuwang, Qiujuan Chen, and Xiaohui Zhang. 2022. "Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity" Materials 15, no. 24: 8768. https://doi.org/10.3390/ma15248768
APA StyleMo, F., Chen, Q., & Zhang, X. (2022). Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity. Materials, 15(24), 8768. https://doi.org/10.3390/ma15248768