Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity
Abstract
:1. Introduction
2. Results
3. Materials and Methods
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ding, H.; Tan, P.; Fu, S.; Tian, X.; Zhang, H.; Ma, X.; Gu, Z.; Luo, K. Preparation and application of pH-responsive drug delivery systems. J. Control Release 2022, 348, 206–238. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, W.; Li, J.; Hu, Z.; Wang, N.; Yu, X. A facile strategy to construct fluorescent pH-sensitive drug delivery vehicle. Polymer 2020, 197, 122496. [Google Scholar] [CrossRef]
- Yu, K.; Hai, X.; Yue, S.; Song, W.; Bi, S. Glutathione-activated DNA-Au nanomachine as targeted drug delivery platform for imaging-guided combinational cancer therapy. Chem. Eng. J. 2021, 419, 129535. [Google Scholar] [CrossRef]
- Liu, F.; Wang, D.; Zhang, M.; Ma, L.; Yu, C.; Wei, H. Synthesis of enzyme-responsive theranostic amphiphilic conjugated bottlebrush copolymers for enhanced anticancer drug delivery. Acta Biomater. 2022, 144, 15–31. [Google Scholar] [CrossRef]
- Fouladi, F.; Steffen, K.J.; Mallik, S. Enzyme-Responsive Liposomes for the Delivery of Anticancer Drugs. Bioconjug. Chem. 2017, 28, 857–868. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, A.; Zhu, S.; Zhou, J.; Wang, H. Dopamine- and citrate-mediated, rapid synthesis of hollow calcium carbonate nanoparticles: Their formation, metastability and transformation. Colloids Surfaces A 2022, 634, 128256. [Google Scholar] [CrossRef]
- Zheng, T.; Yi, H.; Zhang, S.; Wang, C. Preparation and formation mechanism of calcium carbonate hollow microspheres. J. Cryst. Growth 2020, 591, 125870. [Google Scholar] [CrossRef]
- Li, J.; Liu, M.; Qiu, Y.; Gan, Y.; Jiang, H.; Liu, B.; Wei, H.; Ma, N. Urchin-like hydroxyapatite/graphene hollow microspheres as pH-responsive bone drug carriers. Langmuir 2021, 37, 4137–4146. [Google Scholar] [CrossRef]
- Tang, Y.; Qian, W.; Zhang, B.; Liu, W.; Sun, X.; Ji, W.; Ma, L.; Zhu, D. None-loss target release of biomimetic CaCO3 nanocomposites for screening bioactive components and target proteins. ACS Appl. Bio Mater. 2021, 4, 651–659. [Google Scholar] [CrossRef]
- Yang, T.; Ao, Y.; Feng, J.; Wang, C.; Zhang, J. Biomineralization inspired synthesis of CaCO3-based DDS for pH-responsive release of anticancer drug. Mater. Today Commun. 2021, 27, 102256. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, X.; Zhu, Y.; Lv, X.; Wang, P.; Feng, L. pH-responsive nanomedicine co-encapsulated with erlotinib and chlorin e6 can enable effective treatment of triple negative breast cancer via reprogramming tumor vasculature. Chem. Eng. J. 2022, 437, 135305. [Google Scholar] [CrossRef]
- Tan, H.; Liu, Y.; Hou, N.; Cui, S.; Liu, B.; Fan, S.; Yu, G.; Han, C.; Zheng, D.; Li, W.; et al. Tumor microenvironment pH-responsive pentagonal gold prism-based nanoplatform for multimodal imaging and combined therapy of castration-resistant prostate cancer. Acta Biomater. 2022, 141, 408–417. [Google Scholar] [CrossRef] [PubMed]
- Manabe, K.; Oniszczuk, J.; Michely, L.; Belbekhouche, S. pH- and redox-responsive hybrid porous CaCO3 microparticles based on cyclodextrin for loading three probes all at once. Colloids Surf. A Physicochem. Eng. Asp. 2020, 602, 125072. [Google Scholar] [CrossRef]
- Liu, Y.; Li, Y.; Xue, G.; Cao, W.; Zhang, Z.; Wang, C.; Li, X. Shape switching of CaCO3-templated nanorods into stiffness-adjustable nanocapsules to promote efficient drug delivery. Acta Biomater. 2021, 128, 474–485. [Google Scholar] [CrossRef]
- Eurov, D.A.; Kurdyukov, D.A.; Boitsov, V.M.; Kirilenko, D.A.; Shmakov, S.V.; Shvidchenko, A.V.; Smirnov, A.N.; Tomkovich, M.V.; Yagovkina, M.A.; Golubev, V.G. Biocompatible acid-degradable micro-mesoporous CaCO3:Si:Fe nanoparticles potential for drug delivery. Micropor. Mesopor. Mater. 2022, 333, 111762. [Google Scholar] [CrossRef]
- Dou, J.; Zhao, F.; Fan, W.; Chen, Z.; Guo, X. Preparation of nonspherical vaterite CaCO3 particles by flash nanoprecipitation technique for targeted and extended drug delivery. J. Drug Deliv. Sci. Technol. 2020, 57, 101768. [Google Scholar] [CrossRef]
- Wei, Y.; Sun, R.; Su, H.; Xu, H.; Zhang, L.; Huang, D.; Liang, Z.; Hu, Y.; Zhao, L.; Lian, X. Synthesis and characterization of porous CaCO3 microspheres templated by yeast cells and the application as pH value-sensitive anticancer drug carrier. Colloids Surf. B Biointerfaces 2021, 199, 111545. [Google Scholar] [CrossRef]
- Feng, Z.; Yang, T.; Dong, S.; Wu, T.; Jin, W.; Wu, Z.; Wang, B.; Liang, T.; Cao, L.; Yu, L. Industrially synthesized biosafe vaterite hollow CaCO3 for controllable delivery of anticancer drugs. Mater. Today Chem. 2022, 24, 100917. [Google Scholar] [CrossRef]
- Li, G.; Pei, M.; Liu, P. DOX-conjugated CQD-based nanosponges for tumor intracellular pH-triggered DOX release and imaging. Colloids Surf. A Physicochem. Eng. Asp. 2020, 603, 125258. [Google Scholar] [CrossRef]
- Lauth, V.; Loretz, B.; Lehr, C.-M.; Maas, M.; Rezwan, K. Self-assembly and shape control of hybrid nanocarriers based on calcium carbonate and carbon nanodots. Chem. Mater. 2016, 28, 3796–3803. [Google Scholar] [CrossRef]
- Najaflu, M.; Shahgolzari, M.; Bani, F.; Khosroushahi, A.Y. Green synthesis of near-infrared copper-doped carbon dots from alcea for cancer photothermal therapy. ACS Omega 2022, 7, 34573–34582. [Google Scholar] [CrossRef] [PubMed]
- Gautam, B.; Huang, M.-R.; Ali, S.A.; Yan, A.-L.; Yu, H.H.; Chen, J.-T. Smart thermoresponsive electrospun nanofibers with on-demand release of carbon quantum dots for cellular uptake. ACS Appl. Mater. Interfaces 2022, 14, 40322–40330. [Google Scholar] [CrossRef] [PubMed]
- Wolski, P. Molecular Dynamics simulations of the pH-dependent adsorption of doxorubicin on carbon quantum dots. Mol. Pharm. 2021, 18, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Guo, R.; Yuan, F.; Li, Y.; Li, X.; Zhang, Y.; Zhou, S.; Fan, L. Red-emissive carbon quantum dots for nuclear drug delivery in cancer stem cells. J. Phys. Chem. Lett. 2020, 11, 1357–1363. [Google Scholar] [CrossRef] [PubMed]
- Han, C.; Zhang, X.; Wang, F.; Yu, Q.; Chen, F.; Shen, D.; Yang, Z.; Wang, T.; Jiang, M.; Deng, T.; et al. Duplex metal co-doped carbon quantum dots-based drug delivery system with intelligent adjustable size as adjuvant for synergistic cancer therapy. Carbon 2021, 183, 789–808. [Google Scholar] [CrossRef]
- Ajikumar, P.K.; Wong, L.G.; Subramanyam, G.; Lakshminarayanan, R.; Valiyaveettil, S. Synthesis and characterization of monodispersed spheres of amorphous calcium carbonate and calcite spherules. Cryst. Growth Des. 2005, 5, 1129–1134. [Google Scholar] [CrossRef]
- Mihai, M.; Damaceanu, M.-D.; Aflori, M.; Schwarz, S. Calcium carbonate microparticles growth templated by an oxadiazole-functionalized maleic anhydride-co-N-vinyl-pyrrolidone copolymer, with enhanced pH stability and variable loading capabilities. Cryst. Growth Des. 2012, 12, 4479–4486. [Google Scholar] [CrossRef]
- Barhoum, A.; Rahier, H.; Abou-Zaied, R.E.; Rehan, M.; Dufour, T.; Hill, G.; Dufresne, A. Effect of cationic and anionic surfactants on the application of calcium carbonate nanoparticles in paper coating. ACS Appl. Mater. Interfaces 2014, 6, 2734–2744. [Google Scholar] [CrossRef] [Green Version]
- Yaseen, S.A.; Yiseen, G.A.; Li, Z. Elucidation of calcite structure of calcium carbonate formation based on hydrated cement mixed with graphene oxide and reduced graphene oxide. ACS Omega 2019, 4, 10160–10170. [Google Scholar] [CrossRef] [Green Version]
- Yang, T.; He, R.; Nie, G.; Wang, W.; Zhang, G.; Hu, Y.; Wu, L. Creation of hollow calcite single crystals with CQDs: Synthesis, characterization, and fast and efficient decontamination of Cd(II). Sci. Rep. 2018, 8, 17603. [Google Scholar] [CrossRef]
- Song, D.; Tian, J.; Xu, W.; Wen, H.; Wang, C.; Tang, J.; Zhang, J.; Guo, M. Optically induced insulator-to-semiconductor transition in fluorescent carbon quantum dots measured by terahertz time-domain spectroscopy. Carbon 2021, 174, 741–749. [Google Scholar] [CrossRef]
- Wang, L.; Li, W.; Yin, L.; Liu, Y.; Guo, H.; Lai, J.; Han, Y.; Li, G.; Li, M.; Zhang, J.; et al. Full-color fluorescent carbon quantum dots. Sci. Adv. 2020, 6, 6772. [Google Scholar] [CrossRef] [PubMed]
Concentration of GSH (mol/L) | Time (h) | Abs | Concentration of DOX (mg/L) | F (%) |
---|---|---|---|---|
0 | 4 | 0.034 | 3.695 | 9.73% |
8 | 0.064 | 6.853 | 18.05% | |
12 | 0.064 | 6.853 | 18.05% | |
16 | 0.074 | 7.905 | 20.82% | |
20 | 0.061 | 6.537 | 17.22% | |
24 | 0.067 | 7.168 | 18.88% | |
0.0001 | 4 | 0.071 | 7.589 | 20.38% |
8 | 0.075 | 8.011 | 21.51% | |
12 | 0.096 | 10.221 | 27.44% | |
16 | 0.099 | 10.537 | 28.29% | |
20 | 0.084 | 8.958 | 24.05% | |
24 | 0.067 | 7.168 | 19.25% | |
0.001 | 4 | 0.128 | 13.589 | 35.80% |
8 | 0.144 | 15.274 | 40.24% | |
12 | 0.193 | 20.432 | 53.83% | |
16 | 0.171 | 18.116 | 47.72% | |
20 | 0.189 | 20.011 | 52.72% | |
24 | 0.169 | 17.905 | 47.17% | |
0.005 | 4 | 0.399 | 42.116 | 73.50% |
8 | 0.413 | 43.589 | 76.07% | |
12 | 0.4 | 42.221 | 73.68% | |
16 | 0.439 | 46.326 | 80.85% | |
20 | 0.467 | 49.274 | 85.99% | |
24 | 0.444 | 46.853 | 81.77% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mo, F.; Chen, Q.; Zhang, X. Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity. Materials 2022, 15, 8768. https://doi.org/10.3390/ma15248768
Mo F, Chen Q, Zhang X. Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity. Materials. 2022; 15(24):8768. https://doi.org/10.3390/ma15248768
Chicago/Turabian StyleMo, Fuwang, Qiujuan Chen, and Xiaohui Zhang. 2022. "Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity" Materials 15, no. 24: 8768. https://doi.org/10.3390/ma15248768
APA StyleMo, F., Chen, Q., & Zhang, X. (2022). Synthesis of Hollow Calcium Carbonate Microspheres by a Template Method for DOX Loading and Release with Carbon Dots Photosensitivity. Materials, 15(24), 8768. https://doi.org/10.3390/ma15248768