DFT Insight into Conductive and Magnetic Properties of Heterostructures with BaTiO3 Overlayer
Abstract
1. Introduction
2. Materials and Methods
2.1. DFT Details
2.2. Resistivity and Magnetic Susceptibility Measurements Details
3. Results and Discussion
3.1. BaTiO3/Si Heterostructure
3.2. BaTiO3/LaMnO3 Heterostructure
3.3. Magnetic Susceptibility and Resistivity Measurement for Ba0.8Sr0.2TiO3/LaMnO3 Heterostructure
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohtomo, A.; Hwang, H.Y. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 2004, 427, 423–426. [Google Scholar] [CrossRef]
- Reyren, N.; Thiel, S.; Caviglia, A.D.; Fitting Kourkoutis, L.; Hammerl, G.; Richter, C.; Schneider, C.W.; Kopp, T.; Rüetschi, A.-S.; Jaccard, D.; et al. Superconducting Interfaces Between Insulating Oxides. Science 2007, 317, 1196–1199. [Google Scholar] [CrossRef] [PubMed]
- Bert, J.A.; Kalisky, B.; Bell, C.; Kim, M.; Hikita, Y.; Hwang, H.Y.; Moler, K.A. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 2011, 7, 767–771. [Google Scholar] [CrossRef]
- Li, L.; Richter, C.; Mannhart, J.; Ashoori, R.C. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 2011, 7, 762–766. [Google Scholar] [CrossRef]
- Brinkman, A.; Huijben, M.; van Zalk, M.; Huijben, J.; Zeitler, U.; Maan, J.C.; van der Wiel, W.G.; Rijnders, G.; Blank, D.H.A.; Hilgenkamp, H. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 2007, 6, 493–496. [Google Scholar] [CrossRef]
- Pavlenko, N.; Kopp, T.; Tsymbal, E.Y.; Mannhart, J.; Sawatzky, G.A. Oxygen vacancies at titanate interfaces: Two-dimensional magnetism and orbital reconstruction. Phys. Rev. B 2012, 86, 064431. [Google Scholar] [CrossRef]
- Pavlenko, N.; Kopp, T.; Tsymbal, E.Y.; Sawatzky, G.A.; Mannhart, J. Magnetic and superconducting phases at the LaAlO3/SrTiO3 interface: The role of interfacial Ti 3d electrons. Phys. Rev. B 2012, 85, 020407. [Google Scholar] [CrossRef]
- Pavlenko, N.; Kopp, T.; Mannhart, J. Emerging magnetism and electronic phase separation at titanate interfaces. Phys. Rev. B 2013, 88, 201104. [Google Scholar] [CrossRef]
- Lechermann, F.; Boehnke, L.; Grieger, D.; Piefke, C. Electron correlation and magnetism at the LaAlO3/SrTiO3 interface: A DFT+ DMFT investigation. Phys. Rev. B 2014, 90, 085125. [Google Scholar] [CrossRef]
- Park, J.; Cho, B.-G.; Kim, K.D.; Koo, J.; Jang, H.; Ko, K.-T.; Park, J.-H.; Lee, K.-B.; Kim, J.-Y.; Lee, D.R.; et al. Oxygen-vacancy-induced orbital reconstruction of Ti ions at the interface of LaAlO3/SrTiO3 heterostructures: A resonant soft-X-ray scattering study. Phys. Rev. Lett. 2013, 110, 017401. [Google Scholar] [CrossRef]
- Salluzzo, M.; Gariglio, S.; Stornaiuolo, D.; Sessi, V.; Rusponi, S.; Piamonteze, C.; De Luca, G.M.; Minola, M.; Marré, D.; Gadaleta, A.; et al. Origin of interface magnetism in BiMnO3/SrTiO3 and LaAlO3/SrTiO3 heterostructures. Phys. Rev. Lett. 2013, 111, 087204. [Google Scholar] [CrossRef]
- Piyanzina, I.I.; Eyert, V.; Lysogorskiy, Y.V.; Tayurskii, D.A.; Kopp, T. Oxygen vacancies and hydrogen doping in LaAlO3/SrTiO3 heterostructures: Electronic properties and impact on surface and interface reconstruction. J. Phys. Condens. Matter 2019, 31, 295601. [Google Scholar] [CrossRef]
- Fredrickson, K.D.; Demkov, A.A. Switchable conductivity at the ferroelectric interface: Nonpolar oxides. Phys. Rev. B 2015, 91, 115126. [Google Scholar] [CrossRef]
- Niranjan, M.K.; Wang, Y.; Jaswal, S.S.; Tsymbal, E.Y. Prediction of a switchable two-dimensional electron gas at ferroelectric oxide interfaces. Phys. Rev. Lett. 2009, 103, 016804. [Google Scholar] [CrossRef]
- Liu, X.; Tsymbal, E.Y.; Rabe, K.M. Polarization-controlled modulation doping of a ferroelectric from first principles. Phys. Rev. B 2018, 97, 094107. [Google Scholar] [CrossRef]
- Weng, Y.; Niu, W.; Huang, X.; An, M.; Dong, S. Ferroelectric control of a spin-polarized two-dimensional electron gas. Phys. Rev. B 2021, 103, 214101. [Google Scholar] [CrossRef]
- Cao, C.; Chen, S.; Deng, J.; Li, G.; Zhang, Q.; Gu, L.; Ying, T.P.; Guo, E.J.; Guo, J.G.; Chen, X. Two-Dimensional Electron Gas with High Mobility Forming at BaO/SrTiO3 Interface. Chin. Phys. Lett. 2022, 39, 047301. [Google Scholar] [CrossRef]
- Mirsian, S.; Khodadadian, A.; Hedayati, M.; Manzour-ol-Ajdad, A.; Kalantarinejad, R.; Heitzinger, C. A new method for selective functionalization of silicon nanowire sensors and Bayesian inversion for its parameters. Biosens. Bioelectron. 2019, 142, 111527. [Google Scholar] [CrossRef]
- Khodadadian, A.; Hosseini, K.; Manzour-ol-Ajdad, A.; Hedayati, M.; Kalantarinejad, R.; Heitzinger, C. Optimal design of nanowire field-effect troponin sensors. Comput. Biol. Med. 2017, 87, 46–56. [Google Scholar] [CrossRef]
- Guo, W.; Posadas, A.B.; Demkov, A.A. Epitaxial integration of BaTiO3 on Si for electro-optic applications. J. Vac. Sci. Technol. A Vac. Surf. Film. 2021, 39, 030804. [Google Scholar] [CrossRef]
- Li, W.; Lee, J.; Demkov, A.A. Extrinsic magnetoelectric effect at the BaTiO3/Ni interface. J. Appl. Phys. 2022, 131, 054101. [Google Scholar] [CrossRef]
- Xu, S.; Guo, L.; Sun, Q.; Wang, Z.L. Piezotronic effect enhanced plasmonic photocatalysis by AuNPs/BaTiO3 heterostructures. Adv. Funct. Mater. 2019, 29, 1808737. [Google Scholar]
- Guo, L.; Zhong, C.; Cao, J.; Hao, Y.; Lei, M.; Bi, K.; Sun, Q.; Wang, Z.L. Enhanced photocatalytic H2 evolution by plasmonic and piezotronic effects based on periodic Al/BaTiO3 heterostructures. Nano Energy 2019, 62, 513–520. [Google Scholar] [CrossRef]
- Zhou, X.; Shen, B.; Zhai, J.; Hedin, N. Reactive oxygenated species generated on Iodide-doped BiVO4/BaTiO3 heterostructures with Ag/Cu nanoparticles by coupled piezophototronic effect and plasmonic excitation. Adv. Funct. Mater. 2021, 31, 2009594. [Google Scholar]
- Singh, A.; Rawat, R.K.; Chauhan, P. Design and development of SnO decorated BaTiO3 heterostructure device platform for ethanol vapor detection. J. Mater. Sci. Mater. Electron. 2022, 33, 18220–18230. [Google Scholar] [CrossRef]
- Yao, J.; Ye, M.; Sun, Y.; Yuan, Y.; Fan, H.; Zhang, Y.; Chen, C.; Liu, C.; Zhong, G.; Jia, T.; et al. Atomic-Scale insight into the reversibility of polar order in ultrathin epitaxial Nb: SrTiO3/BaTiO3 heterostructure and its implication to resistive switching. Acta Mater. 2020, 188, 23–29. [Google Scholar] [CrossRef]
- Khan, A.I.; Keshavarzi, A.; Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 2020, 3, 588–597. [Google Scholar] [CrossRef]
- Böscke, T.; Müller, J.; Bräuhaus, D.; Schröder, U.; Böttger, U. Ferroelectricity in hafnium oxide: CMOS compatible ferroelectric field effect transistors. In Proceedings of the IEEE International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 24.5.1–24.5.4. [Google Scholar]
- Dünkel, S.; Trentzsch, M.; Richter, R.; Moll, P.; Fuchs, C.; Gehring, O.; Majer, M.; Wittek, S.; Müller, B.; Melde, T.; et al. A FeFET based super-low-power ultra-fast embedded NVM technology for 22 nm FDSOI and beyond. In Proceedings of the Electron Devices Meeting (IEDM), 2017 IEEE International, San Francisco, CA, USA, 2–6 December2017; pp. 19.7.1–19.7.4. [Google Scholar]
- Toprasertpong, K.; Takenaka, M.; Takagi, S. Direct observation of interface charge behaviors in FeFET by quasi-static split C-V and Hall techniques: Revealing FeFET operation. In Proceedings of the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 7–11 December 2019; pp. 23.7.1–23.7.4. [Google Scholar] [CrossRef]
- Cao, W.; Banerjee, K. Is negative capacitance FET a steep-slope logic switch? Nat. Commun. 2020, 11, 1196. [Google Scholar] [CrossRef]
- Hoffmann, M.; Fengler, F.P.G.; Herzig, M.; Mittmann, T.; Max, B.; Schroeder, U.; Negrea, R.; Lucian, P.; Slesazeck, S.; Mikolajick, T. Unveiling the double-well energy landscape in a ferroelectric layer. Nature 2019, 565, 464. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Kohn, W.; Sham, L.J. Self-Consistent Equations Including Exchange and Correlation Effects. Phys. Rev. 1965, 140, A1133–A1138. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp. Mat. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- MedeA, Version 3.4; Materials Design, Inc.: San Diego, CA, USA, 2021.
- Dudarev, S.L.; Botton, G.A.; Savrasov, S.Y.; Humphreys, C.J.; Sutton, A.P. Electron-energy-loss spectra and the structural stability of nickel oxide: An LSDA+ U study. Phys. Rev. B 1998, 57, 1505–1509. [Google Scholar] [CrossRef]
- Piyanzina, I.I.; Kopp, T.; Lysogorskiy, Y.V.; Tayurskii, D.A.; Eyert, V. Electronic properties of LaAlO3/SrTiO3 n-type interfaces: A GGA+ U study. J. Phys. Condens. Matter 2017, 29, 095501. [Google Scholar] [CrossRef]
- Pavlov, D.P.; Piyanzina, I.I.; Mukhortov, V.M.; Balbashov, A.M.; Tayurskii, D.A.B.; Garifullin, I.G.A.; Mamin, R.F. Two-dimensional electron gas at the interface of Ba0.8Sr0.2TiO3 ferroelectric and LaMnO3 antiferomagnet. JETP Lett. 2017, 106, 460–464. [Google Scholar] [CrossRef]
- Kabanov, V.V.; Piyanzina, I.I.; Lysogorskiy, Y.V.; Tayurskii, D.A.; Mamin, R.F. Ab initio investigation of electronic and magnetic properties of antiferromagnetic/ferroelectric LaMnO3/BaTiO3 interface. Mater. Res. Express 2020, 7, 055020. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zagidullina, A.; Piyanzina, I.; Jagličić, Z.; Kabanov, V.; Mamin, R. DFT Insight into Conductive and Magnetic Properties of Heterostructures with BaTiO3 Overlayer. Materials 2022, 15, 8334. https://doi.org/10.3390/ma15238334
Zagidullina A, Piyanzina I, Jagličić Z, Kabanov V, Mamin R. DFT Insight into Conductive and Magnetic Properties of Heterostructures with BaTiO3 Overlayer. Materials. 2022; 15(23):8334. https://doi.org/10.3390/ma15238334
Chicago/Turabian StyleZagidullina, Alina, Irina Piyanzina, Zvonko Jagličić, Viktor Kabanov, and Rinat Mamin. 2022. "DFT Insight into Conductive and Magnetic Properties of Heterostructures with BaTiO3 Overlayer" Materials 15, no. 23: 8334. https://doi.org/10.3390/ma15238334
APA StyleZagidullina, A., Piyanzina, I., Jagličić, Z., Kabanov, V., & Mamin, R. (2022). DFT Insight into Conductive and Magnetic Properties of Heterostructures with BaTiO3 Overlayer. Materials, 15(23), 8334. https://doi.org/10.3390/ma15238334