Crystal Structures and Microwave Dielectric Properties of Novel MgCu2Nb2O8 Ceramics Prepared by Two-Step Sintering Technique
Abstract
1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, P.P.; Chen, X.M. Further ordering structural investigation of Ba((Co,Zn,Mg)1/3Nb2/3)O3 perovskites by Raman spectroscopy. Mater. Charact. 2019, 158, 109938. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, Y.; Xiang, M. Crystal structure and microwave dielectric characteristics of Zr-substituted CoTiNb2O8 ceramics. J. Am. Ceram. Soc. 2016, 36, 1945–1951. [Google Scholar] [CrossRef]
- Reaney, I.M.; Iddles, D. Microwave Dielectric Ceramics for Resonators and Filters in Mobile Phone Networks. J. Am. Ceram. Soc. 2006, 89, 2063–2072. [Google Scholar] [CrossRef]
- Song, X.-Q.; Du, K.; Li, J.; Lan, X.-K.; Lu, W.-Z.; Wang, X.-H.; Lei, W. Low-fired fluoride microwave dielectric ceramics with low dielectric loss. Ceram. Int. 2018, 45, 279–286. [Google Scholar] [CrossRef]
- Wang, Y.; Zuo, R.; Zhang, C.; Zhang, J.; Zhang, T. Low-temperature-fired ReVO4 (Re = La, Ce) microwave dielectric ceramics. J. Am. Ceram. Soc. 2015, 98, 1–4. [Google Scholar] [CrossRef]
- Liu, S.; Tang, B.; Zhou, M.; Zhao, P.; Xiang, Q.; Zhang, X.; Fang, Z.; Zhang, S. Microwave dielectric characteristics of high permittivity Ca0.35Li0.25Nd0.35Ti1−x(Zn1/3Ta2/3)xO3 ceramics (x = 0.00–0.12). Ceram. Int. 2019, 45, 8600–8606. [Google Scholar] [CrossRef]
- Liu, F.; Liu, S.; Cui, X.; Cheng, L.; Li, H.; Wang, J.; Rao, W. Ordered Domains and Microwave Properties of Sub-micron Structured Ba(Zn1/3Ta2/3)O3 Ceramics Obtained by Spark Plasma Sintering. Materials 2019, 12, 638. [Google Scholar] [CrossRef]
- Liu, X. Sr(Ga0.5Nb0.5)1−xTixO3 Low-Loss Microwave Dielectric Ceramics with Medium Dielectric Constant. J. Am. Ceram. Soc. 2015, 98, 2534–2540. [Google Scholar]
- Hughes, H.; Iddles, D.M.; Reaney, I.M. Niobate-based microwave dielectrics suitable for third generation mobile phone base stations. Appl. Phys. Lett. 2001, 79, 2952–2954. [Google Scholar] [CrossRef]
- Cao, M.; Wang, X.; Zhang, M.; Shu, J.; Cao, W.; Yang, H.; Fang, X.; Yuan, J. Electromagnetic Response and Energy Conversion for Functions and Devices in Low-Dimensional Materials. Adv. Funct. Mater. 2019, 29, 1807398. [Google Scholar] [CrossRef]
- Qiao, J.; Li, L. Structural, residual stress and sintering schedule studies on (Mg1/3Nb2/3)x(Zr0.4Ti0.6)1−xO2 microwave ceramics. Mater. Lett. 2022, 309, 131369–131372. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, Q.; Huang, F.; Huo, X.; Li, F.; Jing, Y.; Li, Y.; Su, H. Low loss Ba3Ti4Nb4O21 microwave dielectric ceramics through (Mn1/3Nb2/3)4+ ion control engineering for LTCC applications. J. Appl. Phys. 2022, 926, 166885–166896. [Google Scholar] [CrossRef]
- Pullar, R.C.; Breeze, J.D.; Alford, N.M. Characterization and Microwave Dielectric Properties of M2+Nb2O6 Ceramics. J. Am. Ceram. Soc. 2005, 88, 2466–2471. [Google Scholar] [CrossRef]
- Huang, C.-L.; Yang, W.-R.; Yu, P.-C. High-Q microwave dielectrics in low-temperature sintered (Zn1−xNix)3Nb2O8 ceramics. J. Eur. Ceram. Soc. 2014, 34, 277–284. [Google Scholar] [CrossRef]
- Sebastian, M.T.; Solomon, S.; Ratheesh, R.; George, J.; Mohanan, P. Preparation, Characterization, and Microwave Properties of RETiNbO6 (RE = Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Y, and Yb) Dielectric Ceramics. J. Am. Ceram. Soc. 2001, 84, 1487–1489. [Google Scholar] [CrossRef]
- Kim, D.-W.; Kwon, D.-K.; Yoon, S.H.; Hong, K.S. Microwave Dielectric Properties of Rare-Earth Ortho-Niobates with Ferroelasticity. J. Am. Ceram. Soc. 2006, 89, 3861–3864. [Google Scholar] [CrossRef]
- Pullar, R.C.; Lai, C.; Azough, F.; Freer, R.; Alford, N.M. Novel microwave dielectric LTCCs based uponV2O5 doped M2+Cu2Nb2O8 compounds (M2+ = Zn, Co, Ni, Mg and Ca). J. Eur. Ceram. Soc. 2006, 26, 1943–1946. [Google Scholar] [CrossRef]
- Yang, H.; Zhang, S.; Fang, A.; Chen, H.; Xiong, Z.; Tang, B. A new niobate-based CaO-2CuO-Nb2O5 microwave dielectric ceramic composite for LTCC applications. J. Mater. Sci. Mater. Electron. 2018, 29, 4533–4537. [Google Scholar] [CrossRef]
- Hakki, B.; Coleman, P. A Dielectric Resonator Method of Measuring Inductive Capacities in the Millimeter Range. IEEE Trans. Microw. Theory Tech. 1960, 8, 402–410. [Google Scholar] [CrossRef]
- Wu, C.; Hu, Y.; Bao, S.; Wang, G.; Jiang, P.; Chen, J.; Duan, Z.; Deng, W. Microwave dielectric properties of low-temperature-fired MgNb2O6 ceramics for LTCC applications. RSC Adv. 2020, 10, 29835–29842. [Google Scholar] [CrossRef]
- Mukherjee, N.; Show, B.; Maji, S.K.; Madhu, U.; Bhar, S.K.; Mitra, B.C.; Khan, G.G.; Mondal, A. CuO nano-whiskers: Electrodeposition, Raman analysis, photoluminescence study and photocatalytic activity. Mater. Lett. 2011, 65, 3248–3250. [Google Scholar] [CrossRef]
- Liu, S.; Li, H.; Xiang, R.; Zhang, P.; Chen, X.; Wen, Q.; Hu, H. Effect of substituting Al3+ for Ti4+ on the microwave dielectric performance of Mg2Ti1−xAl4/3xO4 (0.01 ≤ x ≤ 0.09) ceramics. Ceram. Int. 2021, 47, 33064–33069. [Google Scholar] [CrossRef]
- Khairallah, F.; Glisenti, A. XPS Study of MgO Nanopowders Obtained by Different Preparation Procedures. Surf. Sci. Spectra 2006, 13, 58–71. [Google Scholar] [CrossRef]
- Vasquez, R.P. CuO by XPS. Appl. Surf. Sci. 1998, 5, 262–266. [Google Scholar] [CrossRef]
- Ai, W.; Xiong, S. Effect of ion bombardment on the properties of Nb2O5 films deposited in large coating chamber. Optik 2021, 231, 166376. [Google Scholar] [CrossRef]
- Atuchin, V.; Kalabin, I.; Kesler, V.; Pervukhina, N. Nb 3d and O 1s core levels and chemical bonding in niobates. J. Electron Spectrosc. Relat. Phenom. 2005, 142, 129–134. [Google Scholar] [CrossRef]
- Alkathy, M.S.; Rahman, A.; Zabotto, F.L.; Milton, F.P.; Raju, K.J.; Eiras, J. Room-temperature multiferroic behaviour in Co/Fe co-substituted layer-structured Aurivillius phase ceramics. Ceram. Int. 2022, 48, 30041–30051. [Google Scholar] [CrossRef]
- Tang, B.; Fang, Z.-X.; Li, Y.-X.; Zhang, X.; Zhang, S.-R. Microwave dielectric properties of Ba(Co0.56Y0.04Zn0.35)1/3Nb2/3+x O3(x = −0.004 ~ 0.008) ceramics. J. Mater. Sci. Mater. Electron. 2015, 26, 6585–6591. [Google Scholar] [CrossRef]
- Wang, H.; Fu, R.L.; Liu, H.; Fang, J.; Li, G.J. Effects of Ca2+ substitution on microstructure and microwave dielectric properties of low loss Ba(Mg1/3Nb2/3)O3 perovskite ceramics. J. Mater. Sci. Mater. Electron. 2019, 30, 5726–5732. [Google Scholar] [CrossRef]
- Li, H.; Zhang, P.C.; Yu, S.Q.; Yang, H.Y.; Tang, B.; Li, F.H.; Zhang, S.R. Structural dependence of microwave dielectric properties of spinel structured Mg2(Ti1−xSnx)O4 solid solutions: Crystal structure refinement, Raman spectra study and complex chemical bond theory. Ceram. Int. 2019, 45, 11639–11647. [Google Scholar] [CrossRef]
- Xiong, Z.; Tang, B.; Zhang, X.; Yang, C.; Fang, Z.; Zhang, S. Low-fire processing and microwave dielectric properties of LB glass-doped Ba3.75Nd9.5Ti17.5(Cr0.5Nb0.5)0.5O54 ceramic. J. Am. Ceram. Soc. 2021, 104, 1726–1739. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, S.; Tang, B.; Zhou, X.; Fang, Y. Microwave dielectric properties of BaO-2(1−x)ZnO-xNd2O3-4TiO2 (x = 0–1.0) ceramics. Ceram. Int. 2012, 38, 613–618. [Google Scholar] [CrossRef]
- Liu, Y.C.; Chen, J.H.; Wang, H.W.; Liu, C.Y. Synthesis of (BaxSr1−x)(Zn1/3Nb2/3)O3 ceramics by reaction-sintering process and microstructure. Mater. Res. Bull. 2006, 41, 455–460. [Google Scholar] [CrossRef]
- Huang, C.-L.; Chen, J.-Y.; Liang, C.-C. Dielectric properties and mixture behavior of Mg4Nb2O9–SrTiO3 ceramic system at microwave frequency. J. Alloys Compd. 2009, 478, 554–558. [Google Scholar] [CrossRef]
- Koga, E.; Yamagishi, Y.; Moriwake, H.; Kakimoto, K.; Ohsato, H. Order-Disorder transition and its effect on microwave quality factor Q in Ba(Zn1/3Nb2/3)O3 System. J. Electroceram. 2006, 17, 375–379. [Google Scholar] [CrossRef]
- Chen, Y. Microwave dielectric properties of [(Mg0.5Zn0.5)0.95Co0.05]2TiO4 ceramics with BaCu(B2O5) sintered at low temperatures. J. Alloys Compd. 2012, 543, 125–128. [Google Scholar] [CrossRef]
- Wang, C.; Jing, X.; Wang, L.; Lu, J. XRD and Raman Studies on the Ordering/Disordering of Ba(Mg1/3Ta2/3)O3. J. Am. Ceram. Soc. 2009, 92, 1547–1551. [Google Scholar] [CrossRef]








| ST (°C) | Lattice Parameter | RWP | RP | χ2 | ||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| ap1 (Å) | bp1 (Å) | cp1 (Å) | Vp1 (Å3) | Wp1 | ap2 (Å) | bp2 (Å) | cp2 (Å) | Vp2 (Å3) | ||||
| 875 | 14.1865 | 5.7032 | 5.0325 | 407.168 | 73.05% | 4.6889 | 3.4198 | 5.1313 | 81.164 | 5.95% | 4.57% | 2.676 |
| 900 | 14.1827 | 5.7025 | 5.0306 | 406.855 | 77.43% | 4.6889 | 3.4197 | 5.1291 | 81.110 | 5.95% | 4.37% | 3.678 |
| 925 | 14.1857 | 5.7024 | 5.0324 | 407.081 | 77.12% | 4.6874 | 3.4171 | 5.1266 | 80.991 | 5.5% | 3.94% | 2.879 |
| 950 | 14.1750 | 5.6975 | 5.0289 | 406.146 | 76.58% | 4.6880 | 3.4157 | 5.1253 | 80.941 | 5.37% | 4.16% | 2.679 |
| 975 | 14.1612 | 5.6911 | 5.0232 | 404.835 | 76.43% | 4.6819 | 3.4068 | 5.1194 | 80.543 | 5.97% | 4.51% | 3.201 |
| 1000 | 14.1611 | 5.6914 | 5.0241 | 404.929 | 74.82% | 4.6794 | 3.4087 | 5.1157 | 80.460 | 5.30% | 4.11% | 2.386 |
| Spot | Atom Fraction/(%) | |||
|---|---|---|---|---|
| Mg | Cu | Nb | O | |
| A | 11.81 | 22.38 | 65.81 | |
| B | 52.12 | 47.88 | ||
| C | 11.93 | 22.66 | 65.41 | |
| D | 50.87 | 49.13 | ||
| E | 12.06 | 23.71 | 64.23 | |
| F | 51.59 | 48.41 | ||
| ST (°C) | ρapparent (g/cm3) | ρp1 (g/cm3) | ρp2 (g/cm3) | ρtheory (g/cm3) | ρrelative (%) | Porosity (%) |
|---|---|---|---|---|---|---|
| 875 | 5.161 | 4.994 | 6.510 | 5.883 | 87.73 | 15.63 |
| 900 | 5.324 | 5.029 | 6.481 | 5.796 | 91.86 | 5.42 |
| 925 | 5.519 | 5.026 | 6.483 | 5.803 | 95.11 | 1.13 |
| 950 | 5.467 | 5.022 | 6.488 | 5.815 | 94.02 | 2.83 |
| 975 | 5.386 | 5.025 | 6.506 | 5.828 | 92.42 | 4.12 |
| 1000 | 5.192 | 5.021 | 6.517 | 5.865 | 88.53 | 8.67 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peng, S.; Li, C.; Tang, C.; Liu, S.; Huang, S.; Qiu, L.; Deng, L. Crystal Structures and Microwave Dielectric Properties of Novel MgCu2Nb2O8 Ceramics Prepared by Two-Step Sintering Technique. Materials 2022, 15, 8053. https://doi.org/10.3390/ma15228053
Peng S, Li C, Tang C, Liu S, Huang S, Qiu L, Deng L. Crystal Structures and Microwave Dielectric Properties of Novel MgCu2Nb2O8 Ceramics Prepared by Two-Step Sintering Technique. Materials. 2022; 15(22):8053. https://doi.org/10.3390/ma15228053
Chicago/Turabian StylePeng, Sen, Chen Li, Chao Tang, Sheng Liu, Shengxiang Huang, Leilei Qiu, and Lianwen Deng. 2022. "Crystal Structures and Microwave Dielectric Properties of Novel MgCu2Nb2O8 Ceramics Prepared by Two-Step Sintering Technique" Materials 15, no. 22: 8053. https://doi.org/10.3390/ma15228053
APA StylePeng, S., Li, C., Tang, C., Liu, S., Huang, S., Qiu, L., & Deng, L. (2022). Crystal Structures and Microwave Dielectric Properties of Novel MgCu2Nb2O8 Ceramics Prepared by Two-Step Sintering Technique. Materials, 15(22), 8053. https://doi.org/10.3390/ma15228053

