Effect of the Source-to-Substrate Distance on Structural, Optoelectronic, and Thermoelectric Properties of Zinc Sulfide Thin Films
Abstract
:1. Introduction
2. Experimental and Computed Methods
3. Results and Discussions
3.1. Structural Analysis
3.2. Surface Morphology
3.3. Optical Analysis
3.4. Electrical and Electronic Analysis
3.5. Thermoelectric Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rajaitha, P.; Hajra, S.; Sahu, M.; Mistewicz, K.; Toroń, B.; Abolhassani, R.; Panda, S.; Mishra, Y.; Kim, H. Unraveling highly efficient nanomaterial photocatalyst for pollutant removal: A comprehensive review and future progress. Mater. Today Chem. 2022, 23, 100692. [Google Scholar] [CrossRef]
- Sahu, M.; Šafranko, S.; Hajra, S.; Padhan, A.M.; Živković, P.; Jokić, S.; Kim, H.J. Development of triboelectric nanogenerator and mechanical energy harvesting using argon ion-implanted kapton, zinc oxide and kapton. Mater. Lett. 2021, 301, 130290. [Google Scholar] [CrossRef]
- Kisslinger, R.; Hua, W.; Shankar, K. Bulk Heterojunction Solar Cells Based on Blends of Conjugated Polymers with II–VI and IV–VI Inorganic Semiconductor Quantum Dots. Polymers 2017, 9, 35. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Iqbal, M.F.; Saeed, S.; Wu, L.; Zhu, P.; Wang, D. Enhanced anharmonic phonon coupling and decay dominated by low-energy phonons in CdS nanowires. J. Raman Spectrosc. 2019, 50, 1492–1501. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Ullah, K.; Yaqoob, M.M.; Khan, A.A.; Farid, S.; Zhu, P.; Wang, D. Anharmonic phonon coupling and decay of optical phonons in polycrystalline CdSe thin films. Ceram. Int. 2022, 48, 23862–23869. [Google Scholar] [CrossRef]
- Iqbal, M.F.; Ain, Q.U.; Yaqoob, M.M.; Zhu, P.; Wang, D. Temperature dependence of exciton–phonon coupling and phonon anharmonicity in ZnTe thin films. J. Raman Spectrosc. 2022, 53, 1265–1274. [Google Scholar] [CrossRef]
- Suthar, D.; Chasta, G.; Himanshu; Patel, S.; Chander, S.; Kannan, M.; Dhaka, M. Impact of different annealing conditions on physical properties of ZnSe thin films for ecofriendly buffer layer applications. Mater. Res. Bull. 2020, 132, 110982. [Google Scholar] [CrossRef]
- Shikha, D.; Mehta, V.; Sharma, J.; Chauhan, R.P. Study of structural, optical and electrical parameters of ZnSe powder and thin films. J. Mater. Sci. Mater. Electron. 2017, 28, 8359–8365. [Google Scholar] [CrossRef]
- Goktas, A.; Aslan, F.; Yasar, E.; Mutlu, I.H. Preparation and characterisation of thickness dependent nano-structured ZnS thin films by sol–gel technique. J. Mater. Sci. Mater. Electron. 2011, 23, 1361–1366. [Google Scholar] [CrossRef]
- Zafar, S.; Zubair, M.; Shah, S.M.; Khan, M.I.; Khan, A.A.; Iqbal, M.F.; Hassan, A.; Din, M.F.U. Effect of Fe doping on the structural and optical properties of ZnS macro-spheres. Optik 2022, 262, 169342. [Google Scholar] [CrossRef]
- Kumar, A.; Mukherjee, S.; Sahare, S.; Choubey, R.K. Influence of deposition time on the properties of ZnS/p-Si heterostructures. Mater. Sci. Semicond. Process. 2021, 122, 105471. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, S.; Li, Y.; Li, X.X.; Li, Y.; Sun, W.; Liu, G.; Chen, N.; Du, G. Strong blue luminescence of O2−-doped ZnS nanoparticles synthesized by a low temperature solid state reaction method. Mater. Sci. Semicond. Process. 2013, 16, 833–837. [Google Scholar] [CrossRef]
- Benamra, H.; Saidi, H.; Attaf, A.; Aida, M.; Derbali, A.; Attaf, N. Physical properties of Al-doped ZnS thin films prepared by ultrasonic spray technique. Surfaces Interfaces 2020, 21, 100645. [Google Scholar] [CrossRef]
- Karimi, A.; Sohrabi, B.; Vaezi, M. Highly transparent, flexible and hydrophilic ZnS thin films prepared by a facile and environmentally friendly chemical bath deposition method. Thin Solid Films 2018, 651, 97–110. [Google Scholar] [CrossRef]
- Offor, P.; Whyte, G.; Otung, F.; Nnamchi, P.; Ude, S.; Omah, A.; Daniel-Mkpume, C.; Neife, S.; Aigbodion, V.; Madu, S.; et al. The characteristics and wettability response of spray-synthesized ZnS films complexed with glycine. Surfaces Interfaces 2019, 16, 157–163. [Google Scholar] [CrossRef]
- Azmand, A.; Kafashan, H. Al-doped ZnS thin films: Physical and electrochemical characterizations. J. Alloy. Compd. 2019, 779, 301–313. [Google Scholar] [CrossRef]
- Derbali, A.; Attaf, A.; Saidi, H.; Benamra, H.; Nouadji, M.; Aida, M.S.; Attaf, N.; Ezzaouia, H. Investigation of structural, optical and electrical properties of ZnS thin films prepared by ultrasonic spray technique for photovoltaic applications. Optik 2018, 154, 286–293. [Google Scholar] [CrossRef]
- Hurma, T. Structural and optical properties of nanocrystalline ZnS and ZnS:Al films. J. Mol. Struct. 2018, 1161, 279–284. [Google Scholar] [CrossRef]
- Alam, M.; Cameron, D. Investigation of annealing effects on sol–gel deposited indium tin oxide thin films in different atmospheres. Thin Solid Films 2002, 420, 76–82. [Google Scholar] [CrossRef]
- Keshav, R.; Mahesha, M. Photoluminescence and Raman spectroscopic analysis of PV deposited ZnS thin films. Mater. Res. Bull. 2018, 105, 360–367. [Google Scholar] [CrossRef]
- Kaushalya; Patel, S.; Purohit, A.; Chander, S.; Dhaka, M. Thermal annealing evolution to physical properties of ZnS thin films as buffer layer for solar cell applications. Phys. E Low-Dimens. Syst. Nanostruct. 2018, 101, 174–177. [Google Scholar] [CrossRef]
- Kumar, K.C.; Kaleemulla, S. Effect of Ni incorporation on structural, optical and magnetic properties of electron beam evaporated ZnS thin films. J. Phys. Chem. Solids 2019, 135, 109028. [Google Scholar] [CrossRef]
- Joishy, S.; Antony, A.; Poornesh, P.; Choudhary, R.; Rajendra, B.V. Influence of Cd on structure, surface morphology, optical and electrical properties of nano crystalline ZnS films. Sens. Actuators A Phys. 2020, 303, 111719. [Google Scholar] [CrossRef]
- Shkir, M.; Anis, M.; Shafik, S.; Manthrammel, M.A.; Sayeed, M.; Hamdy, M.S.; AlFaify, S. An effect of Zn content doping on opto-third order nonlinear characteristics of nanostructured CdS thin films fabricated through spray pyrolysis for optoelectronics. Phys. E Low-Dimens. Syst. Nanostruct. 2020, 118, 113955. [Google Scholar] [CrossRef]
- Sundhar, A. Development of ZnS thin film with Co, Cu and Ag doping using SILAR method. Mater. Today Proc. 2020, 48, 377–381. [Google Scholar] [CrossRef]
- Toma, O.; Ion, L.; Iftimie, S.; Antohe, V.; Radu, A.; Raduta, A.; Manica, D.; Antohe, S. Physical properties of rf-sputtered ZnS and ZnSe thin films used for double-heterojunction ZnS/ZnSe/CdTe photovoltaic structures. Appl. Surf. Sci. 2019, 478, 831–839. [Google Scholar] [CrossRef]
- Kim, Y.S.; Yun, S.J. Studies on polycrystalline ZnS thin films grown by atomic layer deposition for electroluminescent applications. Appl. Surf. Sci. 2004, 229, 105–111. [Google Scholar] [CrossRef]
- Arandhara, G.; Bora, J.; Saikia, P. Effect of pH on the crystallite size, elastic properties and morphology of nanostructured ZnS thin films prepared by chemical bath deposition technique. Mater. Chem. Phys. 2020, 241, 122277. [Google Scholar] [CrossRef]
- Rodríguez, C.; Sandoval-Paz, M.; Cabello, G.; Flores, M.; Fernández, H.; Carrasco, C. Characterization of ZnS thin films synthesized through a non-toxic precursors chemical bath. Mater. Res. Bull. 2014, 60, 313–321. [Google Scholar] [CrossRef]
- Blaha, P.; Schwarz, K.; Madsen, G.K.; Kvasnicka, D.; Luitz, J. wien2k: An Augmented Plane Wave+ Local Orbitals Program for Calculating Crystal Properties; Vienna University of Technology: Vienna, Austria, 2001; p. 60. [Google Scholar]
- Harikesh, P.C.; Mulmudi, H.K.; Ghosh, B.; Goh, T.W.; Teng, Y.T.; Thirumal, K.; Lockrey, M.; Weber, K.; Koh, T.M.; Li, S.; et al. Rb as an Alternative Cation for Templating Inorganic Lead-Free Perovskites for Solution Processed Photovoltaics. Chem. Mater. 2016, 28, 7496–7504. [Google Scholar] [CrossRef]
- Tran, F.; Blaha, P. Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential. Phys. Rev. Lett. 2009, 102, 226401. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singh, D.J. Electronic structure calculations with the Tran-Blaha modified Becke-Johnson density functional. Phys. Rev. B 2010, 82, 205102. [Google Scholar] [CrossRef] [Green Version]
- Koller, D.; Tran, F.; Blaha, P. Merits and limits of the modified Becke-Johnson exchange potential. Phys. Rev. B 2011, 83, 195134. [Google Scholar] [CrossRef] [Green Version]
- Tran, F.; Blaha, P. Importance of the Kinetic Energy Density for Band Gap Calculations in Solids with Density Functional Theory. J. Phys. Chem. A 2017, 121, 3318–3325. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Borlido, P.; Aull, T.; Huran, A.W.; Tran, F.; Marques, M.A.L.; Botti, S. Large-Scale Benchmark of Exchange–Correlation Functionals for the Determination of Electronic Band Gaps of Solids. J. Chem. Theory Comput. 2019, 15, 5069–5079. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, L.I. Semiconductor Materials; CRC Press: Boca Raton, FL, USA, 2020. [Google Scholar]
- Zhang, R.; Wang, B.; Wei, L. Influence of RF power on the structure of ZnS thin films grown by sulfurizing RF sputter deposited ZnO. Mater. Chem. Phys. 2008, 112, 557–561. [Google Scholar] [CrossRef]
- EL Hichou, A.; Addou, M.; Bubendorff, J.L.; Ebothé, J.; El Idrissi, B.; Troyon, M. Microstructure and cathodoluminescence study of sprayed Al and Sn doped ZnS thin films. Semicond. Sci. Technol. 2003, 19, 230. [Google Scholar] [CrossRef]
- Gordillo, G.; Romero, E. Structural characterization of thin films based on II–VI ternary compounds deposited by evaporation. Thin Solid Films 2005, 484, 352–357. [Google Scholar] [CrossRef]
- Ashraf, M.; Akhtar, S.M.J.; Mehmood, M.; Qayyum, A. Optical and structural properties of ZnSxSe1−x thin films deposited by thermal evaporation. Eur. Phys. J.-Appl. Phys. 2009, 48, 4. [Google Scholar] [CrossRef]
- Fang, X.; Zhai, T.; Gautam, U.K.; Li, L.; Wu, L.; Bando, Y.; Golberg, D. ZnS nanostructures: From synthesis to applications. Prog. Mater. Sci. 2011, 56, 175–287. [Google Scholar] [CrossRef]
- Xue, S. Effects of thermal annealing on the optical properties of Ar ion irradiated ZnS films. Ceram. Int. 2013, 39, 6577–6581. [Google Scholar] [CrossRef]
- Jin, C.; Kim, H.; Baek, K.; Lee, C. Effects of coating and thermal annealing on the photoluminescence properties of ZnS/ZnO one-dimensional radial heterostructures. Mater. Sci. Eng. B 2010, 170, 143–148. [Google Scholar] [CrossRef]
- Zhang, Z.; Shen, D.; Zhang, J.; Shan, C.; Lu, Y.; Liu, Y.; Li, B.; Zhao, D.; Yao, B.; Fan, X. The growth of single cubic phase ZnS thin films on silica glass by plasma-assisted metalorganic chemical vapor deposition. Thin Solid Films 2006, 513, 114–117. [Google Scholar] [CrossRef]
- Luque, P.; Castro-Beltran, A.; Vilchis-Nestor, A.; Quevedo-Lopez, M.; Olivas, A. Influence of pH on properties of ZnS thin films deposited on SiO2 substrate by chemical bath deposition. Mater. Lett. 2015, 140, 148–150. [Google Scholar] [CrossRef] [Green Version]
- Elidrissi, B.; Addou, M.; Regragui, M.; Bougrine, A.; Kachouane, A.; Bernède, J. Structure, composition and optical properties of ZnS thin films prepared by spray pyrolysis. Mater. Chem. Phys. 2001, 68, 175–179. [Google Scholar] [CrossRef]
- Wright, K.; Watson, G.W.; Parker, S.C.; Vaughan, D.J. Simulation of the structure and stability of sphalerite (ZnS) surfaces. Am. Miner. 1998, 83, 141–146. [Google Scholar] [CrossRef]
- Cullity, B.D. Answers to Problems: Elements of X-ray Diffraction; Addison-Wesley Publishing Company: Boston, MA, USA, 1978. [Google Scholar]
- Jauncey, G. The scattering of x-rays and Bragg’s law. Proc. Natl. Acad. Sci. USA 1924, 10, 57–60. [Google Scholar] [CrossRef] [Green Version]
- Kole, A.K.; Kumbhakar, P. Cubic-to-hexagonal phase transition and optical properties of chemically synthesized ZnS nanocrystals. Results Phys. 2012, 2, 150–155. [Google Scholar] [CrossRef] [Green Version]
- Ashrat, M.; Mehmood, M.; Qayyum, A. Influence of source-to-substrate distance on the properties of ZnS films grown by close-space sublimation. Semiconductors 2012, 46, 1326–1330. [Google Scholar] [CrossRef]
- Benyahia, K.; Benhaya, A.; Aida, M.S. ZnS thin films deposition by thermal evaporation for photovoltaic applications. J. Semicond. 2015, 36, 103001. [Google Scholar] [CrossRef]
- Özütok, F.; Ertürk, K.; Bilgin, V. Growth, electrical, and optical study of ZnS: Mn thin films. Acta Phys. Pol. A 2012, 121, 1–3. [Google Scholar] [CrossRef]
- Derbali, A.; Attaf, A.; Saidi, H.; Aida, M.; Benamra, H.; Attaf, R.; Attaf, N.; Ezzaouia, H. Br doping effect on structural, optical and electrical properties of ZnS thin films deposited by ultrasonic spray. Mater. Sci. Eng. B 2021, 268, 115135. [Google Scholar] [CrossRef]
- Chelvanathan, P.; Yusoff, Y.; Haque, F.; Akhtaruzzaman, M.; Alam, M.; Alothman, Z.; Rashid, M.; Sopian, K.; Amin, N. Growth and characterization of RF-sputtered ZnS thin film deposited at various substrate temperatures for photovoltaic application. Appl. Surf. Sci. 2015, 334, 138–144. [Google Scholar] [CrossRef]
- Ke, J.; Chen, S.; Song, L.; Zhang, P.; Cao, X.; Wang, B.; Zhang, R. Effect of film thickness on structural and optical properties of ZnS:Cu films prepared by vulcanization. Superlattices Microstruct. 2020, 146, 106671. [Google Scholar] [CrossRef]
- Jafari-Rad, A.; Kafashan, H. Preparation and characterization of electrochemically deposited nanostructured Ti-doped ZnS thin films. Ceram. Int. 2019, 45, 21413–21422. [Google Scholar] [CrossRef]
- Yeung, K.M.; Tsang, W.S.; Mak, C.L.; Wong, K.H. Optical studies of ZnS:Mn films grown by pulsed laser deposition. J. Appl. Phys. 2002, 92, 3636–3640. [Google Scholar] [CrossRef] [Green Version]
- Ezema, F.; Ekwealor, A.; Osuji, R. Effect of thermal annealing on the band GAP and optical properties of chemical bath deposited ZnSe thin films. Turk. J. Phys. 2006, 30, 157–163. [Google Scholar]
- Shao, L.-X.; Chang, K.-H.; Hwang, H.-L. Zinc sulfide thin films deposited by RF reactive sputtering for photovoltaic applications. Appl. Surf. Sci. 2003, 212, 305–310. [Google Scholar] [CrossRef]
- Bilal, U.; Ramzan, M.; Imran, M.; Naz, G.; Mukhtar, M.W.; Fahim, F.; Iqbal, H.M.N. HfO2-based nanostructured thin-films (i.e., low-e coatings) with robust optical performance and energy efficiency. J. Nanostructure Chem. 2022, 1–12. [Google Scholar] [CrossRef]
- Ramzan, M.; Imran, M.; Ullah, S.; Khan, M.A.; Naz, G.; Ghouri, M.; Iqbal, H.M. Fabrication and characterization of multifunctional thin multi-layer films for transparent conducting oxides. Prog. Org. Coatings 2020, 149, 105976. [Google Scholar] [CrossRef]
- Wooten, F. Optical Properties of Solids; Academic Press: New York, NY, USA; London, UK, 1972. [Google Scholar]
- Sagadevan, S. Synthesis, structural and dielectric properties of zinc sulfide nanoparticles. Int. J. Phys. Sci. 2013, 8, 1121–1127. [Google Scholar]
- Adewale, A.A.; Chik, A.; Adam, T.; Joshua, T.M.; Durowoju, M.O. Optoelectronic behavior of ZnS compound and its alloy: A first principle approach. Mater. Today Commun. 2021, 27, 102077. [Google Scholar] [CrossRef]
- Maligi, A.S.; Jampana, N.; Gowravaram, M.R. Growth and characterization studies of ZnS thin films prepared by single source evaporation technique. AIP Conf. Proc. 2017, 1832, 080080. [Google Scholar] [CrossRef]
- Katz, H.E.; Poehler, T.O. Innovative Thermoelectric Materials: Polymer, Nanostructure and Composite Thermoelectrics; World Scientific: Singapore, 2016. [Google Scholar]
- Noor, N.; Saddique, M.B.; Haq, B.U.; Laref, A.; Rashid, M. Investigations of half-metallic ferromagnetism and thermoelectric properties of cubic XCrO3 (X = Ca, Sr, Ba) compounds via first-principles approaches. Phys. Lett. A 2018, 382, 3095–3102. [Google Scholar] [CrossRef]
- Takeuchi, T. Conditions of Electronic Structure to Obtain Large Dimensionless Figure of Merit for Developing Practical Thermoelectric Materials. Mater. Trans. 2009, 50, 2359–2365. [Google Scholar] [CrossRef] [Green Version]
- Jaffe, J.; Pandey, R.; Seel, M. Ab initio high-pressure structural and electronic properties of ZnS. Phys. Rev. B 1993, 47, 6299. [Google Scholar] [CrossRef]
- Reeber, R.; Powell, G. Thermal expansion of ZnS from 2 to 317 K. J. Appl. Phys. 1967, 38, 1531–1534. [Google Scholar] [CrossRef]
- Es-Smairi, A.; Fazouan, N.; Bziz, I.; Atmani, E.H. DFT Study of Structural, Electronic and Optical Properties of ZnS Phases. In Proceedings of the 2018 6th International Renewable and Sustainable Energy Conference (IRSEC), Rabat, Morocco, 5–8 December 2018; IEEE: Piscataway, NJ, USA, 2018. [Google Scholar]
- Wu, A.; Qiao, Y.; Lv, F. Study on the Electronic Structures of ZnS and Ag-doped ZnS from Density Functional Theory. In Proceedings of the 2015 4th International Conference on Sensors, Measurement and Intelligent Materials, Shenzhen, China, 27–28 December 2015; Atlantis Press: Zhengzhou, China, 2016. [Google Scholar]
Samples ID | ZnS-A | ZnS-B | ZnS-C | ZnS-D | References |
---|---|---|---|---|---|
SSD (mm) | 20 | 40 | 60 | 80 | |
FWHM (rad) | 0.0060 | 0.0058 | 0.0055 | 0.0058 | 0.005, 0.0053 [20], 0.0096 [22] |
Crystallite size “D” (nm) | 26 | 27 | 29 | 27 | 15 [22],29.6, 28.2 [20], 38 [17] |
Micro strain “ε” (×10−3) | 1.47 | 1.42 | 1.34 | 1.42 | 1.22, 1.28 [20], 0.913 [17], 0.23 [22], 8.4 [53] |
Dislocation density “δ” (×1015 m−2) | 1.47 | 1.37 | 1.34 | 1.37 | 0.69 [17], 4.1 [22] |
Band gap (eV) | 3.31 | 3.50 | 3.54 | 3.47 | 3.48 [17], 3.46 [22], 3.75 [54], 3.5 [53] |
Sample ID | Sheet Resistance (×1010 Ω/Sq.) | Electrical Resistivity (×105 Ω-cm) |
---|---|---|
ZnS-A | 31.4 | 68.9 |
ZnS-B | 20.6 | 40.5 |
ZnS-C | 1.54 | 2.87 |
ZnS-D | 1.71 | 3.25 |
Properties | Computed Values | Reference Values |
---|---|---|
ε1 (0) | 4.39 | ------ |
n (0) | 1.68 | ------ |
R(0) | 0.01 | -------- |
a (ω) | 7.17 eV, 8.97 eV | 5–10.5 eV [66] |
ao (Å) | 5.40 | 5.44 [71], 5.45 [72] |
Eg (eV) | 3.47 | 3.71 [73], 2.09, 3.68 [74] |
(Ωms)−1 | 1.68 × 1018 | ------ |
(W/mKs) | 4.95 × 1013 | ------- |
(S) (V/K) | 2.72 × 10−4 | ------- |
ZT | 0.77 | ------- |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.U.R.; Ramzan, M.; Iqbal, M.F.; Hafeez, M.; Fadhali, M.M.; Somaily, H.H.; Javid, M.; Mukhtar, M.W.; Saleem, M.F. Effect of the Source-to-Substrate Distance on Structural, Optoelectronic, and Thermoelectric Properties of Zinc Sulfide Thin Films. Materials 2022, 15, 8047. https://doi.org/10.3390/ma15228047
Khan AUR, Ramzan M, Iqbal MF, Hafeez M, Fadhali MM, Somaily HH, Javid M, Mukhtar MW, Saleem MF. Effect of the Source-to-Substrate Distance on Structural, Optoelectronic, and Thermoelectric Properties of Zinc Sulfide Thin Films. Materials. 2022; 15(22):8047. https://doi.org/10.3390/ma15228047
Chicago/Turabian StyleKhan, Asad Ur Rehman, Muhammad Ramzan, Muhammad Faisal Iqbal, Muhammad Hafeez, Mohammed M. Fadhali, Hamoud H. Somaily, Muhammad Javid, Muhammad Waqas Mukhtar, and Muhammad Farooq Saleem. 2022. "Effect of the Source-to-Substrate Distance on Structural, Optoelectronic, and Thermoelectric Properties of Zinc Sulfide Thin Films" Materials 15, no. 22: 8047. https://doi.org/10.3390/ma15228047
APA StyleKhan, A. U. R., Ramzan, M., Iqbal, M. F., Hafeez, M., Fadhali, M. M., Somaily, H. H., Javid, M., Mukhtar, M. W., & Saleem, M. F. (2022). Effect of the Source-to-Substrate Distance on Structural, Optoelectronic, and Thermoelectric Properties of Zinc Sulfide Thin Films. Materials, 15(22), 8047. https://doi.org/10.3390/ma15228047