Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussions
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lassner, E.; Schubert, W.D. Tungsten: Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds; Springer: Berlin, Germany, 1999. [Google Scholar]
- Rieth, M.; Dudarev, S.L.; Gonzalez de Vicente, S.M.; Aktaa, J.; Ahlgren, T.; Antusch, S.; Armstrong, D.E.J.; Balden, M.; Baluc, N.; Barthe, M.F.; et al. Recent progress in research on tungsten materials for nuclear fusion applications in Europe. J. Nucl. Mater. 2013, 432, 482–500. [Google Scholar] [CrossRef]
- Lu, W.R.; Gao, C.Y.; Ke, Y.L. Constitutive modeling of two-phase metallic composites with application to tungsten-based composite 93W–4.9Ni–2.1Fe. Mater. Sci. Eng. A 2014, 592, 136–142. [Google Scholar] [CrossRef]
- Mondal, A.; Upadhyaya, A.; Agrawal, D. Microwave and conventional sintering of 90W–7Ni–3Cu alloys with premixed and prealloyed binder phase. Mater. Sci. Eng. A 2010, 527, 6870–6878. [Google Scholar] [CrossRef]
- Chen, C.-L.; Ma, S.-H. Effects of Ni/Co ratio and mechanical alloying on characteristics and sintering behavior of W-Ni-Co tungsten heavy alloys. J. Alloy. Compd. 2017, 711, 488–494. [Google Scholar] [CrossRef]
- Şahin, Y. Recent Progress in Processing of Tungsten Heavy Alloys. J. Powder Technol. 2014, 2014, 764306. [Google Scholar] [CrossRef]
- German, R.M.; Suri, P.; Park, S.J. Review: Liquid phase sintering. J. Mater. Sci. 2009, 44, 1–39. [Google Scholar] [CrossRef]
- Dong, H.; Li, P.; Ai, T.; Li, W. Mechanical Properties and Microstructure of W-6Ni-4Co Alloy by a Two-Step Sintering Process. Metals 2019, 9, 680. [Google Scholar] [CrossRef]
- Ryu, H.J.; Hong, S.H.; Baek, W.H. Mechanical alloying process of 93W-5.6 Ni-1.4 Fe tungsten heavy alloy. J. Mater. Processing Technol. 1997, 63, 292–297. [Google Scholar] [CrossRef]
- Li, X.; Hu, K.; Qu, S.; Li, L.; Yang, C. 93W–5.6Ni–1.4Fe heavy alloys with enhanced performance prepared by cyclic spark plasma sintering. Mater. Sci. Eng. A 2014, 599, 233–241. [Google Scholar]
- Xiang, D.P.; Ding, L.; Li, Y.Y.; Chen, X.Y.; Zhang, T.M. Fabricating fine-grained tungsten heavy alloy by spark plasma sintering of low-energy ball-milled W–2Mo–7Ni–3Fe powders. Mater. Sci. Eng. A 2013, 578, 18–23. [Google Scholar] [CrossRef]
- Satyanarayana, P.; Sokkalingam, R.; Jena, P.; Sivaprasad, K.; Prashanth, K. Tungsten matrix composite reinforced with cocrfemnni high-entropy alloy: Impact of processing routes on microstructure and mechanical properties. Metals 2019, 9, 992. [Google Scholar] [CrossRef]
- Shao, Y.; Ma, H.; Cui, L. Fine-grained W-NiTi heavy alloys with enhanced performance. Mater. Sci. Eng. A 2018, 729, 357–361. [Google Scholar] [CrossRef]
- Ma, H.; Shao, Y.; Shek, C.H. Microstructure, grain growth behavior and mechanical properties of W-CoCuFeNi tungsten heavy alloys prepared by infiltration. Int. J. Refract. Met. Hard Mater. 2021, 98, 105572. [Google Scholar] [CrossRef]
- Shao, Y.; Guo, F.; Huan, Y.; Jiang, D.; Zhang, J.; Ren, Y.; Cui, L. Fabrication, microstructure and mechanical properties of W NiTi composites. J. Alloy. Compd. 2017, 695, 1976–1983. [Google Scholar] [CrossRef]
- Park, S.; Martin, J.; Guo, J.; Johnson, J.L.; German, R.M. Grain growth behavior of tungsten heavy alloys based on the master sintering curve concept. Metall. Mater. Trans. A 2006, 37, 3337–3346. [Google Scholar] [CrossRef]
- Dinçer, O.; Pehlivanoğlu, M.K.; Çalişkan, N.K.; Karakaya, İ.; Kalkanli, A. Processing and microstructural characterization of liquid phase sintered tungsten–nickel–cobalt heavy alloys. Int. J. Refract. Met. Hard Mater. 2015, 50, 106–112. [Google Scholar] [CrossRef]
- Fan, J.L.; Gong, X.; Huang, B.Y.; Song, M.; Liu, T.; Tian, J.M. Densification behavior of nanocrystalline W–Ni–Fe composite powders prepared by sol-spray drying and hydrogen reduction process. J. Alloy. Compd. 2010, 489, 188–194. [Google Scholar] [CrossRef]
- Ding, L.; Xiang, D.P.; Li, Y.Y.; Li, C.; Li, J.B. Effects of sintering temperature on fine-grained tungsten heavy alloy produced by high-energy ball milling assisted spark plasma sintering. Int. J. Refract. Met. Hard Mater. 2012, 33, 65–69. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shao, Y.; Yu, W.; Wu, J.; Ma, H. Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys. Materials 2022, 15, 8035. https://doi.org/10.3390/ma15228035
Shao Y, Yu W, Wu J, Ma H. Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys. Materials. 2022; 15(22):8035. https://doi.org/10.3390/ma15228035
Chicago/Turabian StyleShao, Yang, Weikang Yu, Jifei Wu, and Haiwen Ma. 2022. "Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys" Materials 15, no. 22: 8035. https://doi.org/10.3390/ma15228035
APA StyleShao, Y., Yu, W., Wu, J., & Ma, H. (2022). Effect of Sintering Temperatures on Grain Coarsening Behaviors and Mechanical Properties of W-NiTi Heavy Tungsten Alloys. Materials, 15(22), 8035. https://doi.org/10.3390/ma15228035