Quasi-One-Dimensional Linarite-Type PbCu(SeO4)(OH)2 with Competing Nearest-Neighbor and Next-Nearest-Neighbor Intrachain Exchange Interactions
Abstract
1. Introduction
2. Synthesis and the Crystal Structure
3. Physical Properties
4. Density Functional Calculations
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vasiliev, A.; Volkova, O.; Zvereva, E.; Markina, M. Milestones of low-D quantum magnetism. NPJ Quantum Mater. 2018, 3, 18. [Google Scholar] [CrossRef]
- Drechsler, S.-L.; Richter, J.; Kuzian, R.; Málek, J.; Tristan, N.; Büchner, B.; Moskvin, A.S.; Gippius, A.A.; Vasiliev, A.; Volkova, O.; et al. Helimagnetism and weak ferromagnetism in edge-shared chain cuprates. J. Magn. Magn. Mater. 2007, 316, 306–312. [Google Scholar] [CrossRef]
- Lebernegg, S.; Janson, O.; Rousochatzakis, I.; Nishimoto, S.; Rosner, H.; Tsirlin, A.A. Frustrated spin chain physics near the Majumdar-Ghosh point in szenicsite Cu3(MoO4)(OH)4. Phys. Rev. B 2017, 95, 035145. [Google Scholar] [CrossRef]
- Majumdar, C.K.; Ghosh, D.K. On Next-Nearest-Neighbor Interaction in Linear Chain. I. J. Math. Phys. 1969, 10, 1388–1398. [Google Scholar] [CrossRef]
- Law, J.M.; Reuvekamp, P.; Glaum, R.; Lee, C.; Kang, J.; Whangbo, M.-H.; Kremer, R.K. Quasi-one-dimensional antiferromagnetism and multiferroicity in CuCrO4. Phys. Rev. B 2011, 84, 014426. [Google Scholar] [CrossRef]
- Hikihara, T.; Kecke, L.; Momoi, T.; Furusaki, A. Vector chiral and multipolar orders in the spin-1/2 frustrated ferromagnetic chain in magnetic field. Phys. Rev. B 2008, 78, 144404. [Google Scholar] [CrossRef]
- Vasil’ev, A.N.; Ponomarenko, L.A.; Manaka, H.; Yamada, I.; Isobe, M.; Ueda, Y. Magnetic and resonant properties of quasi-one-dimensional antiferromagnet LiCuVO4. Phys. Rev. B 2001, 64, 024419. [Google Scholar] [CrossRef]
- Masuda, T.; Zheludev, A.; Bush, A.; Markina, M.; Vasiliev, A. Competition between Helimagnetism and Commensurate Quantum Spin Correlations in LiCu2O2. Phys. Rev. Lett. 2004, 92, 177201. [Google Scholar] [CrossRef]
- Drechsler, S.-L.; Volkova, O.; Vasiliev, A.; Tristan, N.; Richter, J.; Schmitt, M.; Rosner, H.; Málek, J.; Klingeler, R.; Zvyagin, A.A.; et al. Frustrated Cuprate Route from Antiferromagnetic to Ferromagnetic Spin-1/2 Heisenberg Chains: Li2ZrCuO4 as a Missing Link near the Quantum Critical Point. Phys. Rev. Lett. 2007, 98, 077202. [Google Scholar] [CrossRef]
- Dutton, S.E.; Kumar, M.; Mourigal, M.; Soos, Z.G.; Wen, J.-J.; Broholm, C.L.; Andersen, N.H.; Huang, Q.; Zbiri, M.; Toft-Petersen, R.; et al. Quantum Spin Liquid in Frustrated One-Dimensional LiCuSbO4. Phys. Rev. Lett. 2012, 108, 187206. [Google Scholar] [CrossRef]
- Baran, M.; Jedrzejczak, A.; Szymczak, H.; Maltsev, V.; Kamieniarz, G.; Szukowski, G.; Loison, C.; Ormeci, A.; Drechsler, S.-L.; Rosner, H. Quasi-one-dimensional S = 1/2 magnet Pb[Cu(SO4)(OH)2]: Frustration due to competing in-chain exchange. Phys. Stat. Sol. C 2006, 3, 220. [Google Scholar] [CrossRef]
- Wolter, A.U.B.; Lipps, F.; Schäpers, M.; Drechsler, S.-L.; Nishimoto, S.; Vogel, R.; Kataev, V.; Büchner, B.; Rosner, H.; Schmitt, M.; et al. Magnetic properties and exchange integrals of the frustrated chain cuprate linarite PbCuSO4(OH)2. Phys. Rev. B 2012, 85, 014407. [Google Scholar] [CrossRef]
- Willenberg, B.; Schäpers, M.; Rule, K.C.; Süllow, S.; Reehuis, M.; Ryll, H.; Klemke, B.; Kiefer, K.; Schottenhamel, W.; Büchner, B.; et al. Magnetic Frustration in a Quantum Spin Chain: The Case of Linarite PbCuSO4(OH)2. Phys. Rev. Lett. 2012, 108, 117202. [Google Scholar] [CrossRef] [PubMed]
- Schäpers, M.; Wolter, A.U.B.; Drechsler, S.-L.; Nishimoto, S.; Müller, K.-H.; Abdel-Hafiez, M.; Schottenhamel, W.; Büchner, B.; Richter, J.; Ouladdiaf, B.; et al. Thermodynamic properties of the anisotropic frustrated spin-chain compound linarite PbCuSO4(OH)2. Phys. Rev. B 2013, 88, 184410. [Google Scholar] [CrossRef]
- Schäpers, M.; Rosner, H.; Drechsler, S.-L.; Süllow, S.; Vogel, R.; Büchner, B.; Wolter, A.U.B. Magnetic and electronic structure of the frustrated spin-chain compound linarite PbCuSO4(OH)2. Phys. Rev. B 2014, 90, 224417. [Google Scholar] [CrossRef]
- Rule, K.C.; Willenberg, B.; Schäpers, M.; Wolter, A.U.B.; Büchner, B.; Drechsler, S.-L.; Ehlers, G.; Tennant, D.A.; Mole, R.A.; Gardner, J.S.; et al. Dynamics of linarite: Observations of magnetic excitations. Phys. Rev. B 2017, 95, 024430. [Google Scholar] [CrossRef]
- Heinze, L.; Bastien, G.; Ryll, B.; Hoffmann, J.-U.; Reehuis, M.; Ouladdiaf, B.; Bert, F.; Kermarrec, E.; Mendels, P.; Nishimoto, S.; et al. Magnetic phase diagram of the frustrated spin chain compound linarite PbCuSO4(OH)2 as seen by neutron diffraction and 1H-NMR. Phys. Rev. B 2019, 99, 094436. [Google Scholar] [CrossRef]
- Povarov, K.Y.; Feng, Y.; Zheludev, A. Multiferroic phases of the frustrated quantum spin-chain compound linarite. Phys. Rev. B 2016, 94, 214409. [Google Scholar] [CrossRef]
- Willenberg, B.; Schäpers, M.; Wolter, A.U.B.; Drechsler, S.-L.; Reehuis, M.; Hoffmann, J.-U.; Büchner, B.; Studer, A.J.; Rule, K.C.; Ouladdiaf, B.; et al. Complex Field-Induced States in Linarite PbCuSO4(OH)2 with a Variety of High-Order Exotic Spin-Density Wave States. Phys. Rev. Lett. 2016, 116, 047202. [Google Scholar] [CrossRef]
- Feng, Y.; Povarov, K.Y.; Zheludev, A. Magnetic phase diagram of the strongly frustrated quantum spin chain system PbCuSO4(OH)2 in tilted magnetic fields. Phys. Rev. B 2018, 98, 054419. [Google Scholar] [CrossRef]
- Cemal, E.; Enderle, M.; Kremer, R.K.; Fåk, B.; Ressouche, E.; Goff, J.P.; Gvozdikova, M.V.; Zhitomirsky, M.E.; Ziman, T. Field-induced States and Excitations in the Quasicritical Spin-1/2 Chain Linarite. Phys. Rev. Lett. 2018, 120, 067203. [Google Scholar] [CrossRef] [PubMed]
- Yasui, Y.; Sato, M.; Terasaki, I. Multiferroic Behavior in the Quasi-One-Dimensional Frustrated Spin-1/2 System PbCuSO4(OH)2 with CuO2 Ribbon Chains. J. Phys. Soc. Jpn. 2011, 80, 033707. [Google Scholar] [CrossRef]
- Mack, T.; Ruff, A.; Krug von Nidda, H.-A.; Loidl, A.; Krohns, S. Dielectric properties of complex magnetic field induced states in PbCuSO4(OH)2. Sci. Rep. 2016, 7, 4460. [Google Scholar] [CrossRef] [PubMed]
- SAINT, Version 8.40B; Bruker AXS Inc.: Madison, WI, USA, 2017.
- Krause, L.; Herbst-Irmer, R.; Sheldrick, G.M.; Stalke, D. Comparison of silver and molybdenum microfocus X-ray sources for single-crystal structure determination J. Appl. Cryst. 2015, 48, 3–10. [Google Scholar] [CrossRef] [PubMed]
- Sheldrick, G.M. SHELX-2018/3, Program Package for Crystal Structure Solution and Refinement; University of Göttingen: Göttingen, Germany, 2018. [Google Scholar]
- Effenberger, H. Crystal Structure and Chemical Formula of Schmiederite, Pb2Cu2(OH)4(SeO3)(SeO4), with a Comparison to Linarite PbCu(OH)2(SO4). Mineral. Petrol. 1987, 36, 3–12. [Google Scholar] [CrossRef]
- Schofield, P.F.; Wilson, C.C.; Knight, K.S.; Kirk, C.A. Proton location and hydrogen bonding in the hydrous lead copper sulfates linarite, PbCu(SO4)(OH)2, and caledonite, Pb5Cu2(SO4)3CO3(OH)6. Can. Mineral. 2009, 47, 649–662. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 1996, 6, 15–50. [Google Scholar] [CrossRef]
- Kresse, G.; Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 1994, 49, 14251. [Google Scholar] [CrossRef]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef]
- Liechtenstein, A.I.; Anisimov, V.I.; Zaanen, J. Density-functional theory and strong interactions: Orbital ordering in Mott-Hubbard insulators. Phys. Rev. B 1995, 52, 5467. [Google Scholar] [CrossRef] [PubMed]
- Cococcioni, M.; de Gironcoli, S. Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 2005, 71, 035105. [Google Scholar] [CrossRef]
- Badrtdinov, D.I.; Mazurenko, V.V.; Tsirlin, A.A. Origin of up-up-down-down magnetic order in Cu2GeO4. Phys. Rev. B 2019, 100, 214401. [Google Scholar] [CrossRef]
- Koepernik, K.; Eschrig, H. Full-potential nonorthogonal local-orbital minimum-basis band-structure scheme. Phys. Rev. B 1999, 59, 1743. [Google Scholar] [CrossRef]
- Lejaeghere, K.; Bihlmayer, G.; Björkman, T.; Blaha, P.; Blügel, S.; Blum, V.; Caliste, D.; Castelli, I.E.; Clark, S.J.; dal Corso, A.; et al. Reproducibility in density functional theory calculations of solids. Science 2016, 351, 1415. [Google Scholar] [CrossRef]
- Yang, H.; McGlasson, J.A.; Gibbs, R.B.; Downs, R.T. Franksousaite, PbCu(Se6+O4)(OH)2, the Se6+ analogue of linarite, a new mineral from the El Dragón mine, Potosí, Bolivia. Mineral. Mag. 2022, 86, 792–798. [Google Scholar] [CrossRef]
Chemical Formula | CuH2O6PbSe |
---|---|
Formula mass [g mol–1] | 447.71 |
Crystal size, mm | 0.120 × 0.040 × 0.030 |
Crystal system | Monoclinic |
Space group | P21/m (no. 11) |
a [Å] | 4.748(2) |
b [Å] | 5.745(3) |
c [Å] | 9.822(9) |
β | 102.39(3) |
V [Å3] | 261.7(3) |
Z | 2 |
T [K] | 110(2) |
dcalcd. [g cm3] | 5.681 |
μ [mm–1] | 43.091 |
θ range [°] | 2.065 < θ < 29.994 |
Collected/independent reflections | 2740/829 |
Rσ/Rint | 0.0353/0.0329 |
Reflections with I > 2σ(I) | 789 |
Refined parameters | 52 |
Largest difference peak/hole [e Å–3] | 1.632/−1.352 |
R1 [I > 2σ(I)]/R1 [all data] | 0.0259/0.0277 |
wR2 [I > 2σ(I)]/wR2 [all data] | 0.0614/0.0614 |
GoF | 1.075 |
Bond | Distance, Å | |
---|---|---|
Pb—O5 | 2.346(12) | |
Pb—O2 | x2 | 2.413(20) |
Pb—O3 | x2 | 2.832(35) |
Pb—O1 | x2 | 3.029(2) |
Se—O3 | 1.637(26) | |
Se—O1 | 1.641(6) | |
Se—O2 | x2 | 1.654(6) |
Cu—O4 | x2 | 1.930(8) |
Cu—O5 | x2 | 1.994(17) |
Cu—O2 | x2 | 2.483(9) |
Compound | U, eV | J1, K | J2, K | J1c, K | J2c, K | J3c, K | α = |J2/J1| |
---|---|---|---|---|---|---|---|
PbCuSO4(OH)2 | 7 | −118 | 72 | 13 | −3 | 1 | 0.61 |
PbCuSeO4(OH)2 | 7 | −103 | 54 | 6 | −1.5 | 1 | 0.52 |
PbCuSeO4(OH)2 | 9 | −80 | 33 | 4 | −1 | 0.6 | 0.41 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Markina, M.; Zakharov, K.; Ovchenkov, Y.; Pashkov, G.; Lyssenko, K.; Berdonosov, P.; Pchelkina, Z.; Vasiliev, A. Quasi-One-Dimensional Linarite-Type PbCu(SeO4)(OH)2 with Competing Nearest-Neighbor and Next-Nearest-Neighbor Intrachain Exchange Interactions. Materials 2022, 15, 7860. https://doi.org/10.3390/ma15217860
Markina M, Zakharov K, Ovchenkov Y, Pashkov G, Lyssenko K, Berdonosov P, Pchelkina Z, Vasiliev A. Quasi-One-Dimensional Linarite-Type PbCu(SeO4)(OH)2 with Competing Nearest-Neighbor and Next-Nearest-Neighbor Intrachain Exchange Interactions. Materials. 2022; 15(21):7860. https://doi.org/10.3390/ma15217860
Chicago/Turabian StyleMarkina, Maria, Konstantin Zakharov, Yevgeniy Ovchenkov, Grigoriy Pashkov, Konstantin Lyssenko, Petr Berdonosov, Zlata Pchelkina, and Alexander Vasiliev. 2022. "Quasi-One-Dimensional Linarite-Type PbCu(SeO4)(OH)2 with Competing Nearest-Neighbor and Next-Nearest-Neighbor Intrachain Exchange Interactions" Materials 15, no. 21: 7860. https://doi.org/10.3390/ma15217860
APA StyleMarkina, M., Zakharov, K., Ovchenkov, Y., Pashkov, G., Lyssenko, K., Berdonosov, P., Pchelkina, Z., & Vasiliev, A. (2022). Quasi-One-Dimensional Linarite-Type PbCu(SeO4)(OH)2 with Competing Nearest-Neighbor and Next-Nearest-Neighbor Intrachain Exchange Interactions. Materials, 15(21), 7860. https://doi.org/10.3390/ma15217860