Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study
Abstract
1. Introduction
2. Model and Monte Carlo Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Untersuchungen, M.; Warburg, E. Ber Einige Wirkungen Der Coercitivkraft. Ann. Phys. 1881, 13, 141. [Google Scholar]
- Debye, P. Einige Bemerkungen Zur Magnetisierung Bei Tiefer Temperature. Ann. Phys. 1926, 81, 1154. [Google Scholar] [CrossRef]
- Giauque, W.F. A Thermodynamic Treatment of Certain Magnetic Effects. A Proposed Method of Producing Temperatures Considerably Below 1º Absolute. J. Am. Chem. Soc. 1927, 49, 1864. [Google Scholar] [CrossRef]
- Tishin, A.M.; Spichkin, Y.I. The Magnetocaloric Effect and Its Applications. In Series in Condensed Matter Physics; Coey, J.M.D., Tilley, D.R., Vij, D.R., Eds.; Institute of Physics Publishing: London, UK, 2003. [Google Scholar]
- Buschow, K.H.J. Handbook of Magnetic Materials; North-Holland Publishers: North Holland, The Netherlands, 2014. [Google Scholar]
- Pecharsky, V.K.; Gschneidner, K.A., Jr. Advanced Magnetocaloric Materials: What Does the Future Hold? Int. J. Refrigeration 2006, 29, 1239. [Google Scholar] [CrossRef]
- Brown, G.V. Magnetic Heat Pumping Near Room Temperature. J. Appl. Phys. 1976, 47, 3673. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, J.A., Jr. Giant Magnetocaloric Effect in Gd5(Si2Ge2). Phys. Rev. Lett. 1997, 78, 4494. [Google Scholar] [CrossRef]
- Guo, Z.B.; Du, Y.W.; Zhu, J.S.; Huang, H.; Ding, W.P.; Feng, D. Large Magnetic Entropy Change in Perovskite-Type Manganese. Phys. Rev. Lett. 1997, 78, 1142. [Google Scholar] [CrossRef]
- Hu, F.X.; Shen, B.G.; Sun, J.R. Magnetic Entropy Change in Ni51.5Mn22.7Ga25.8 Alloy. Appl. Phys. Lett. 2000, 76, 3460. [Google Scholar] [CrossRef]
- Brück, E. Developments in Magnetocaloric Refrigeration. J. Phys. D: Appl. Phys. 2005, 38, R381. [Google Scholar] [CrossRef]
- Phan, M.H.; Yu, S.C. Review of the Magnetocaloric Effect in Manganite Materials. J. Magn. Magn. Mater. 2007, 308, 325. [Google Scholar] [CrossRef]
- Pecharsky, V.K.; Gschneidner, K.A.; Tsokol, A.O. Recent Developments in Magnetocaloric Materials. Rep. Prog. Phys. 2005, 68, 1479. [Google Scholar]
- Fries, M.; Skokov, K.P.; Karpenkov, D.Y.; Franco, V.; Ener, S.; Gutfleisch, O. The Influence of Magnetocrystalline Anisotropy on the Magnetocaloric Effect: A Case Study on Co2B. Appl. Phys. Lett. 2016, 109, 232406. [Google Scholar] [CrossRef]
- Balli, M.; Jandl, S.; Fournier, P.; Gospodinov, M.M. Anisotropy-Enhanced Giant Reversible Rotating Magnetocaloric Effect in HoMn2O5 Single Crystals. Appl. Phys. Lett. 2014, 104, 232402. [Google Scholar] [CrossRef]
- Balli, M.; Fournier, P.; Jandl, S.; Mansouri, S.; Mukhin, A.; Ivanov, Y.V.; Balbashov, A.M. Comment on “Giant Anisotropy of Magnetocaloric Effect in TbMnO3 Single Crystals”. Phys. Rev. B 2017, 96, 146401. [Google Scholar] [CrossRef]
- Reis, M.S.; Rubinger, R.M.; Sobolev, N.A.; Valente, M.A.; Yamada, K.; Sato, K.; Todate, Y.; Bouravleuv, A.; von Ranke, P.J.; Gama, S. Influence of the Strong Magnetocrystalline Anisotropy on the Magnetocaloric Properties of MnP Single Crystal. Phys. Rev. B 2008, 77, 104439. [Google Scholar] [CrossRef]
- Hu, Y.; Wang, Y.; Li, Z.; Chi, X.; Lu, Q.; Hu, T.; Liu, Y.; Du, A.; Shi, F. Low-Field Magnetocaloric Effect in Single Crystals Controlled by Magnetocrystalline Anisotropy. Appl. Phys. Lett. 2018, 113, 133902. [Google Scholar] [CrossRef]
- Hu, Y.; Hu, T.; Chi, X.; Wang, Y.; Lu, Q.; Yu, L.; Li, R.; Liu, Y.; Du, A.; Li, Z.; et al. Magnetocaloric Effect in Cubically Anisotropic Magnets. Appl. Phys. Lett. 2019, 114, 023903. [Google Scholar] [CrossRef]
- Hu, T.; Chi, X.; Lu, Q.; Yu, L.; Li, R.; Liu, Y.; Du, A.; Li, Z.; Shi, F.; Hu, Y. Prediction of Optimized Magnetocaloric Effect in Anisotropic Zinc Ferric Nanoparticles: A Monte Carlo Simulation. J. Alloys Compd. 2019, 801, 465. [Google Scholar] [CrossRef]
- Zhang, J.; Hu, Y. Role of Magnetocrystalline Anisotropy on Anisotropic Magnetocaloric Effect in Single Crystals. Appl. Phys. Lett. 2021, 119, 213903. [Google Scholar] [CrossRef]
- Zhang, H.; Huang, R.; Han, Y.; Guo, S.; Wang, W.; Zheng, F.; Wang, H.; Huang, J.; Li, J.; Li, L. Effect of Partial Substitution of Ce for La on the Structural, Magnetic and Abnormal Thermal Expansion Properties of La1-xCexFe11.2Al1.8 alloys. J. Alloys Compd. 2020, 840, 155766. [Google Scholar] [CrossRef]
- Dubey, K.K.; Devi, P.; Singh, A.K.; Singh, S. Improved Crystallographic Compatibility and Magnetocaloric Reversibility in Pt Substituted Ni2Mn1.4In0.6 Magnetic Shape Memory Heusler Alloys. J. Magn. Magn. Mater. 2020, 507, 166818. [Google Scholar] [CrossRef]
- Chen, J.H.; Trigg, A.; Chhetri, T.P.; Young, D.P.; Dubenko, I.; Ali, N.; Stadler, S. The Influence of Au Substitution and Hydrostatic Pressure on the Phase Transitions and Magnetocaloric Properties of MnCoGe Alloys. J. Appl. Phys. 2020, 127, 213901. [Google Scholar] [CrossRef]
- Terwey, A.; Gruner, M.E.; Keune, W.; Landers, J.; Salamon, S.; Eggert, B.; Ollefs, K.; Brabänder, V.; Radulov, I.; Skokov, K.; et al. Influence of Hydrogenation on the Vibrational Density of States of Magnetocaloric LaFe11.4Si1.6H1.6. Phys. Rev. B 2020, 101, 064415. [Google Scholar] [CrossRef]
- Buchelnikov, V.D.; Sokolovskiy, V.V.; Taskaev, S.V.; Khovaylo, V.V.; Aliev, A.A.; Khanov, L.N.; Batdalov, A.B.; Entel, P.; Miki, H.; Takagi, T. Monte Carlo Simulations of the Magnetocaloric Effect in Magnetic Ni-Mn-X (X = Ga, In) Heusler Alloys. J. Phys. D: Appl. Phys. 2011, 44, 064012. [Google Scholar] [CrossRef]
- Sokolovskiy, V.; Grünebohm, A.; Buchelnikov, V.; Entel, P. Ab Initio and Monte Carlo Approaches For the Magnetocaloric Effect in Co- and In-Doped Ni-Mn-Ga Heusler Alloys. Entropy 2014, 16, 4992. [Google Scholar] [CrossRef]
- Bedanta, S.; Kleemann, W. Supermagnetism. J. Phys. D: Appl. Phys. 2009, 42, 013001. [Google Scholar] [CrossRef]
- Mohanta, N.; Dagotto, E.; Okamoto, S. Topological Hall Effect and Emergent Skyrmion Crystal at Manganite-Iridate Oxide Interfaces. Phys. Rev. B 2019, 100, 064429. [Google Scholar] [CrossRef]
- d’Albuquerque e Castro, J.; Altbir, D.; Retamal, J.C.; Vargas, P. Scaling Approach to the Magnetic Phase Diagram of Nanosized Systems. Phys. Rev. Lett. 2002, 88, 237202. [Google Scholar] [CrossRef]
- Coey, J.M.D. Magnetism and Magnetic Materials; Cambridge University Press: Cambridge, UK, 2009. [Google Scholar]
- Chikazumi, S. Physics of Ferromagnetism; Oxford University Press: New York, NY, USA, 1997. [Google Scholar]
- Pecharsky, V.K.; Gschneidner, K.A. Magnetocaloric Materials. Annu. Rev. Mater. Sci. 2000, 30, 387. [Google Scholar]
- Hao, F.; Hu, Y. Magnetocaloric Effect Manipulated Through Interchain Exchange Coupling in Nanochain Arrays. Appl. Phys. Lett. 2020, 117, 063902. [Google Scholar] [CrossRef]
- Oesterreicher, H.; Parker, F.T. Magnetic Cooling Near Curie Temperatures Above 300 K. J. Appl. Phys. 1984, 55, 4334. [Google Scholar] [CrossRef]
- Franco, V.; Blázquez, J.S.; Conde, A. Field Dependence of the Magnetocaloric Effect in Materials with a Second Order Phase Transition: A Master Curve For the Magnetic Entropy Change. Appl. Phys. Lett. 2006, 89, 222512. [Google Scholar] [CrossRef]
- Franco, V.; Conde, A.; Sidhaye, D.; Prasad, B.L.V.; Poddar, P.; Srinath, S.; Phan, M.H.; Srikanth, H. Field Dependence of the Magnetocaloric Effect in Core-Shell Nanoparticles. J. Appl. Phys. 2010, 107, 09A902. [Google Scholar] [CrossRef]
J′ = 0 | J′ = 1.2 meV | |||
---|---|---|---|---|
Low μ0H | High μ0H | Low μ0H | High μ0H | |
n | 1.5574 ± 0.0270 | 0.9505 ± 0.0191 | 0.6779 ± 0.0192 | 0.6779 ± 0.0192 |
m | 2.1546 ± 0.0509 | 1.4232 ± 0.0643 | 1.4625 ± 0.0676 | 0.9994 ± 0.0443 |
δ | 0.8661 ± 0.0382 | 2.3148 ± 0.3590 | 2.1622 ± 0.3160 | − |
β | 1.9334 ± 0.1670 | 0.8972 ± 0.0499 | 0.5895 ± 0.0498 | − |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Wang, J.; Zhang, C.; Li, Z.; Du, J.; Hu, Y. Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study. Materials 2022, 15, 7777. https://doi.org/10.3390/ma15217777
Zhang J, Wang J, Zhang C, Li Z, Du J, Hu Y. Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study. Materials. 2022; 15(21):7777. https://doi.org/10.3390/ma15217777
Chicago/Turabian StyleZhang, Jiayu, Jian Wang, Chenyu Zhang, Zongbin Li, Juan Du, and Yong Hu. 2022. "Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study" Materials 15, no. 21: 7777. https://doi.org/10.3390/ma15217777
APA StyleZhang, J., Wang, J., Zhang, C., Li, Z., Du, J., & Hu, Y. (2022). Prediction of Magnetocaloric Effect Induced by Continuous Modulation of Exchange Interaction: A Monte Carlo Study. Materials, 15(21), 7777. https://doi.org/10.3390/ma15217777