Synthesis of Geopolymer from a Novel Aluminosilicate-Based Natural Soil Precursor Using Electric Oven Curing for Improved Mechanical Strength
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Treatment
2.2. Sample Preparation
2.3. Characterization Methods
3. Results and Discussion
3.1. Density and Porosity Evaluation
3.2. Fourier Transform Infrared Spectroscopy
3.3. Scanning Electron Microscopy
3.4. Mechanical Strength Analysis
3.5. Comparative Analysis with Published Works
4. Conclusions
- -
- A high aluminosilicate content in NS is critical to achieving high-strength GPs.
- -
- The optimization of the soil-to-alkali or solid-to-water ratio is crucial to maximize the degree of GPN.
- -
- Curing in a microwave or an electric oven significantly influences the porosity and strength levels of the prepared GPs.
- -
- High-strength GPs are desirable to improve structural integrity, while highly porous GPs may be exploited as thermal insulators.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- McLellan, B.C.; Williams, R.P.; Lay, J.; ARiessen, A.V.; Corder, G.D. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 2011, 19, 1080–1090. [Google Scholar] [CrossRef] [Green Version]
- Davidovits, J. Ancient and modern concretes: What is the real difference? Concr. Int. 1987, 9, 23–29. [Google Scholar]
- Haq, E.U.; Majeed, M.U.; Nadeem, M.; Ahmed, F.; Zain-Ul-Abdein, M.; Mughal, K.; Abbas, A.Q.; Hayat, Q. Reinforcement of Silica Particles in Bentonite Clay Based Porous Geopolymeric Material. Silicon 2021, 13, 2745–2751. [Google Scholar] [CrossRef]
- Luukkonen, T.; Abdollahnejad, Z.; Yliniemi, J.; Kinnunen, P.; Illikainen, M. One-part alkali-activated materials: A review. Cem. Concr. Res. 2018, 103, 21–34. [Google Scholar] [CrossRef]
- Moghadam, M.J.; Ajalloeian, R.; Hajiannia, A. Preparation and application of alkali-activated materials based on waste glass and coal gangue: A review. Constr. Build. Mater. 2019, 221, 84–98. [Google Scholar] [CrossRef]
- Bakharev, T. Thermal behaviour of geopolymers prepared using class F fly ash and elevated temperature curing. Cem. Concr. Res. 2006, 36, 1134–1147. [Google Scholar] [CrossRef]
- Nadeem, M.; Zain-Ul-Abdein, M.; Ahmed, F.; Haq, E.U.; Khan, W.A.; Shamsah, S.M.I. Experimental and theoretical investigation of thermal properties of natural soil based geopolymer composites. Int. J. Mater. Res. 2020, 111, 1024–1037. [Google Scholar] [CrossRef]
- Nadeem, M.; Haq, E.U.; Ahmed, F.; Rafiq, M.A.; Awan, G.H.; Zain-Ul-Abdein, M. Effect of microwave curing on the construction properties of natural soil based geopolymer foam. Constr. Build. Mater. 2020, 230, 117074. [Google Scholar] [CrossRef]
- Ducman, V.; Korat, L. Characterization of geopolymer fly-ash based foams obtained with the addition of Al powder or H2O2 as foaming agents. Mater. Charact. 2016, 113, 207–213. [Google Scholar] [CrossRef]
- Duxson, P.; Fernández-Jiménez, A.; Provis, J.L.; Lukey, G.C.; Palomo, A.; van Deventer, J.S.J. Geopolymer technology: The current state of the art. J. Mater. Sci. 2007, 42, 2917–2933. [Google Scholar] [CrossRef]
- Cai, J.; Li, X.; Tan, J.; Vandevyvere, B. Therma. and compressive behaviors of fly ash and metakaolin-based geopolymer. J. Build. Eng. 2020, 30, 101307. [Google Scholar] [CrossRef]
- Nath, P.; Sarker, P.K. Fractur. properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature. Mater. Str. 2017, 50, 32. [Google Scholar] [CrossRef] [Green Version]
- Xie, T.; Ozbakkaloglu, T. Behavior of low-calcium fly and bottom ash-based geopolymer concrete cured at ambient temperature. Ceram. Int. 2015, 41, 5945–5958. [Google Scholar] [CrossRef]
- Li, Q.; Xu, H.; Li, F.; Li, P.; Shen, L.; Zhai, J. Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel 2012, 97, 366–372. [Google Scholar] [CrossRef]
- Santa, R.A.A.B.; Soares, C.; Riella, H.G. Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. J. Hazard. Mater. 2016, 318, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.; He, Y.; Song, X.; Cui, X. Effects of the metakaolin-based geopolymer on high-temperature performances of geopolymer/PVC composite materials. Appl. Clay Sci. 2015, 114, 586–592. [Google Scholar] [CrossRef]
- Kuenzel, C.; Neville, T.P.; Donatello, S.; Vandeperre, L.; Boccaccini, A.R.; Cheeseman, C.R. Influenc. of metakaolin characteristics on the mechanical properties of geopolymers. Appl. Clay Sci. 2013, 83–84, 308–314. [Google Scholar] [CrossRef] [Green Version]
- Palanisamy, P.; Kumar, P.S. Strength and durability features of fiber reinforced geo-polymer earth bricks. J. Asian Archit. Build. Eng. 2022, 21, 439–447. [Google Scholar] [CrossRef]
- Luhar, S.; Cheng, T.W.; Nicolaides, D.; Luhar, I.; Panias, D.; Sakkas, K. Valorisation of glass wastes for the development of geopolymer composites—Durability, thermal and microstructural properties: A review. Constr. Build. Mater. 2019, 222, 673–687. [Google Scholar] [CrossRef]
- Singh, R.J.; Raut, A.; Murmu, A.L.; Jameel, M. Influence of Glass Powder Incorporated Foamed Geopolymer Blocks on Thermal and Energy Analysis of Building Envelope. J. Build. Eng. 2021, 43, 102520. [Google Scholar] [CrossRef]
- Aygörmez, Y. Evaluation of the red mud and quartz sand on reinforced metazeolite-based geopolymer composites. J. Build. Eng. 2021, 43, 102528. [Google Scholar] [CrossRef]
- Friedlander, L.R.; Weisbrod, N.; Garb, Y.J. Climatic and soil-mineralogical controls on the mobility of trace metal contamination released by informal electronic waste (e-waste) processing. Chemosphere 2019, 232, 130–139. [Google Scholar] [CrossRef] [PubMed]
- Sornlar, W.; Wannagon, A.; Supothina, S. Stabilized homogeneous porous structure and pore type effects on the properties of lightweight kaolinite-based geopolymers. J. Build. Eng. 2021, 44, 103273. [Google Scholar] [CrossRef]
- Nadeem, M.; Ilyas, S.; Haq, E.U.; Ahmed, F.; Zain-Ul-Abdein, M.; Karim, M.R.A.; Zaidi, S.F.A. Improved Water Retention and Positive Behavior of Silica Based Geopolymer Utilizing Granite Powder. Silicon 2021, 14, 2337–2349. [Google Scholar] [CrossRef]
- Nadeem, M.; Ahmed, F.; Haq, E.U.; Zain-Ul-Abdein, M.; Raza, A.; Afzal, U.; Bibi, S.; Deen, Z.S. Improved compressive strength and fracture toughness analysis of natural soil based geopolymer. J. Build. Eng. 2021, 44, 103241. [Google Scholar] [CrossRef]
- Zaidi, S.F.A.; Haq, E.U.; Nur, K.; Ejaz, N.; Anis-Ur-Rehman, M.; Zubair, M.; Naveed, M. Synthesis & characterization of natural soil based inorganic polymer foam for thermal insulations. Constr. Build. Mater. 2017, 157, 994–1000. [Google Scholar] [CrossRef]
- Karim, M.R.K.; Haq, E.U.; Hussain, M.A.; Khan, K.I.; Nadeem, M.; Atif, M.; Haq, A.U.; Naveed, M.; Alam, M.M. Experimental evaluation of sustainable geopolymer mortars developed from loam natural soil. J. Asian Archit. Build. Eng. 2020, 19, 637–646. [Google Scholar] [CrossRef]
- Uddin, M.N.; Saraswathy, V. A Comparative Study on Clay and Red Soil Based Geopolymer Mortar. Civ. Eng. Archit. 2018, 6, 34–39. [Google Scholar] [CrossRef]
- Uddin, M.N.; Saraswathy, V.; Elumalai, P. An Experimental Investigation of Red Soil Based Geopolymer Mortar without Portland Cement. Int. J. Sci. Eng. Res. 2015, 6, 1722–1732. [Google Scholar]
- Abdollahnejad, Z.; Pacheco-Torgal, F.; Félix, T.; Tahri, W.; Aguiar, J.B. Mix design, properties and cost analysis of fly ash-based geopolymer foam. Constr. Build. Mater. 2015, 80, 18–30. [Google Scholar] [CrossRef] [Green Version]
- Nmiri, A.; Hamdi, N.; Yazoghli-Marzouk, O.; Duc, M.; Srasra, E. Synthesis and characterization of kaolinite-based geopolymer: Alkaline activation effect on calcined kaolinitic clay at different temperatures. J. Mater. Environ. Sci. 2017, 8, 676–690. [Google Scholar]
- Prud’homme, E.; Michaud, P.; Joussein, E.; Peyratout, C.; Smith, A.; Arrii-Clacens, S.; Clacens, J.M.; Rossignol, S. Silica fume as porogent agent in geo-materials at low temperature. J. Eur. Cer. Soc. 2010, 30, 1641–1648. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D.; Komphanchai, S.; Vagana, R. Formation of inorganic polymers (geopolymers) from 2:1 layer lattice aluminosilicates. J. Eur. Ceram. Soc. 2008, 28, 177–181. [Google Scholar] [CrossRef]
- MacKenzie, K.J.D. Utilisation of non-thermally activated clays in the production of geopolymers. In Structures, Processing, Properties and Industrial Applications; Provis, J.L., van Deventer, J.S.J., Eds.; Woodhead Publishing: New York, NY, USA, 2009; p. 294. [Google Scholar] [CrossRef]
- Davidovits, J. Mineral Polymers and Methods of Making Them. U.S. Patent 4349386, 14 September 1982. [Google Scholar]
- Davidovits, J.; Buzzi, L.; Rocher, P.; Marini, D.G.C.; Tocco, S. Geopolymeric cement based on low cost geologic material, results from the European research project GEOCISTEM. In Proceedings of the 2nd International Conference Geopolymer, Saint-Quentin, France, 30 June–2 July 1999; pp. 83–96. [Google Scholar]
- Chindaprasirt, P.; Silva, P.D.; Sagoe-Crentsil, K.; Hanjitsuwan, S. Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J. Mater. Sci. 2012, 47, 4876–4883. [Google Scholar] [CrossRef]
- Khale, D.; Chaudhary, R. Mechanism of geopolymerization and factors influencing its development: A review. J. Mater. Sci. 2007, 42, 729–746. [Google Scholar] [CrossRef]
- Dave, N.; Misra, A.K.; Srivastava, A.; Kaushik, S.K. Experimental Analysis of Strength and Durability Properties of Quaternary Cement Binder and Mortar. Constr. Build. Mater. 2016, 107, 117–124. [Google Scholar] [CrossRef]
Components | Percentage (%) by Mass |
---|---|
SiO2 | 62.81 |
Al2O3 | 22.37 |
Fe(OH)3 | 11.47 |
TiO2 | 1.11 |
Calcite | 0.92 |
Na2O | 0.81 |
Other impurities | 0.51 |
Sample ID | Solid/Water Ratio | Bulk Density (g/cm3) | True Particle Density (g/cm3) | Total Porosity (%) | Compressive Strength (MPa) |
---|---|---|---|---|---|
*GPS50 | 2.27 | 1.348 | 2.159 | 37.56 | 10.93 |
GPS55 | 2.64 | 1.538 | 2.317 | 33.62 | 13.67 |
GPS60 | 3.09 | 1.589 | 2.338 | 32.04 | 15.27 |
GPS65 | 3.68 | 1.648 | 2.374 | 30.58 | 17.65 |
GPS70 | 4.46 | 1.734 | 2.415 | 28.19 | 21.82 |
GPS75 | 5.55 | 1.857 | 2.463 | 24.60 | 26.39 |
GPS80 | 7.19 | 1.811 | 2.448 | 26.02 | 24.13 |
GP Mortar Material | Compressive Strength (MPa) | Normalized Strength | Reference |
---|---|---|---|
Natural soil | 2.41 | 0.09 | [26] |
Red soil | 7.1 | 0.25 | [28] |
Natural soil | 8.83 | 0.32 | [8] |
Granite powder | 22.0 | 0.79 | [24] |
Loam natural soil | 22.7 | 0.81 | [27] |
Natural soil | 26.39 | 0.94 | Present work |
Ordinary cement mortar (not a GP) | 28.0 | 1.0 | [39] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zain-ul-abdein, M.; Ahmed, F.; Channa, I.A.; Makhdoom, M.A.; Ali, R.; Ehsan, M.; Aamir, A.; Ul Haq, E.; Nadeem, M.; Shafi, H.Z.; et al. Synthesis of Geopolymer from a Novel Aluminosilicate-Based Natural Soil Precursor Using Electric Oven Curing for Improved Mechanical Strength. Materials 2022, 15, 7757. https://doi.org/10.3390/ma15217757
Zain-ul-abdein M, Ahmed F, Channa IA, Makhdoom MA, Ali R, Ehsan M, Aamir A, Ul Haq E, Nadeem M, Shafi HZ, et al. Synthesis of Geopolymer from a Novel Aluminosilicate-Based Natural Soil Precursor Using Electric Oven Curing for Improved Mechanical Strength. Materials. 2022; 15(21):7757. https://doi.org/10.3390/ma15217757
Chicago/Turabian StyleZain-ul-abdein, Muhammad, Furqan Ahmed, Iftikhar Ahmed Channa, Muhammad Atif Makhdoom, Raza Ali, Muhammad Ehsan, Abdullah Aamir, Ehsan Ul Haq, Muhammad Nadeem, Hafiz Zahid Shafi, and et al. 2022. "Synthesis of Geopolymer from a Novel Aluminosilicate-Based Natural Soil Precursor Using Electric Oven Curing for Improved Mechanical Strength" Materials 15, no. 21: 7757. https://doi.org/10.3390/ma15217757
APA StyleZain-ul-abdein, M., Ahmed, F., Channa, I. A., Makhdoom, M. A., Ali, R., Ehsan, M., Aamir, A., Ul Haq, E., Nadeem, M., Shafi, H. Z., Shar, M. A., & Alhazaa, A. (2022). Synthesis of Geopolymer from a Novel Aluminosilicate-Based Natural Soil Precursor Using Electric Oven Curing for Improved Mechanical Strength. Materials, 15(21), 7757. https://doi.org/10.3390/ma15217757