Mixed Ionic and Electronic Conduction in TeO2-ZnO-V2O5 Glasses towards Good Dielectric Features
Abstract
1. Introduction
2. Experimental
3. Results and Analysis
3.1. DSC, XRD, Raman, and FTIR Analysis
3.2. Impedance Spectroscopy
3.2.1. Nyquist Spectra
3.2.2. Electrical Conductivity
3.2.3. Analysis of Dielectric Constant
4. Conclusions
- -
- The glass transition temperature Tg was found to increase with the V2O5 content in the glass.
- -
- Both IR and Raman studies revealed a depolymerization of the glass network with rising the V2O5 concentration. A progressive change of the (VO4) groups to (VO5) units was shown when V2O5 composition was more than 10% by a change of the vanadium coordination due to the higher amount of NBO.
- -
- The conductivity of the glass is assured by a mixed ionic-polaronic process with a dominance of the ionic contribution up to 10% of V2O5, whereas the polaronic component becomes the more significant above this concentration due to the exchange of polarons between V4+ and V5+.
- -
- Variations of electric modulus and the dielectric loss with frequency and temperature exhibited dipolar relaxation effects mainly caused by the vanadate phases. In addition, the electric modulus variation shows a non-Debye dielectric dispersion.
- -
- The decrease of the exponent “s” with temperature is consistent with the CBH process.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kiliç, G.; İşsever, U.G.; İlik, E. The synthesis and characterization of zinc-tellurite semiconducting oxide glasses containing Ta2O5. Mater. Res. Express 2019, 6, 6. [Google Scholar] [CrossRef]
- Mallawany, R. Tellurite Glass Smart Materials: Application in Optics and Beyong, 1st ed.; Springer International Publishing AG: Cham, Switzerland, 2018; p. 297. [Google Scholar]
- Tagiara, N.; Palles, D.; Simandiras, E.; Psycharis, V.; Kyritsis, A.; Kamitsos, E. Synthesis, thermal and structural properties of pure TeO2 glass and zinc-tellurite glasses. J. Non-Crystalline Solids 2017, 457, 116–125. [Google Scholar] [CrossRef]
- McDonald, L.; Siligardi, C.; Vacchi, M.; Zieser, A.; Affatigato, M. Tellurium Vanadate Glasses: V4+colorimetric Measure and Its Effect on Conductivity. Front. Mater. 2020, 7, 103. [Google Scholar] [CrossRef]
- Fares, H.; Jlassi, I.; Elhouichet, H.; Férid, M. Investigations of thermal, structural and optical properties of tellurite glass with WO3 adding. J. Non-Crystalline Solids 2014, 396–397, 1–7. [Google Scholar] [CrossRef]
- Kaky, K.M.; Lakshminarayana, G.; Baki, S.; Kityk, I.; Taufiq-Yap, Y.; Mahdi, M. Structural, thermal and optical absorption features of heavy metal oxides doped tellurite rich glasses. Results Phys. 2017, 7, 166–174. [Google Scholar] [CrossRef]
- Aromäki, I.; Shestopalova, I.; Ponte, R.; Annurakshita, S.; Bautista, G.; Othmani, A.; Elhouichet, H.; Petit, L. (INVITED)Transparent Er3+ doped Ag2O containing tellurite glass-ceramics. Opt. Mater. X 2022, 15, 100164. [Google Scholar] [CrossRef]
- Saad, M.; Stambouli, W.; Sdiri, N.; Elhouichet, H. Effect of mixed sodium and vanadium on the electric and dielectric properties of zinc phosphate glass. Mater. Res. Bull. 2017, 89, 224–231. [Google Scholar] [CrossRef]
- Jlassi, I.; Sdiri, N.; Elhouichet, H. Electrical conductivity and dielectric properties of MgO doped lithium phosphate glasses. J. Non-Crystalline Solids 2017, 466–467, 45–51. [Google Scholar] [CrossRef]
- Arya, S.K.; Danewalia, S.S.; Arora, M.; Singh, K. Effect of Variable Oxidation States of Vanadium on the Structural, Optical, and Dielectric Properties of B2O3–Li2O–ZnO–V2O5 Glasses. J. Phys. Chem. B 2017, 120, 12168–12176. [Google Scholar] [CrossRef]
- Pavani, P.G.; Suresh, S.; Mouli, V.C. Studies on boro cadmium tellurite glasses. Opt. Mater. 2011, 34, 215–220. [Google Scholar] [CrossRef]
- Işsever, U.G.; Kilic, G.; Peker, M.; Ünaldi, T.; Aybek, A.Ş. Effect of low ratio V5+ doping on structural and optical properties of borotellurite semiconducting oxide glasses. J. Mater. Sci. Mater. Electron 2019, 30, 15156–15167. [Google Scholar] [CrossRef]
- Brovelli, S.; Galli, A.; Lorenzi, R.; Meinardi, F.; Spinolo, G.; Tavazzi, S.; Sigaev, V.; Sukhov, S.; Pernice, P.; Aronne, A.; et al. Efficient 1.53 μm erbium light emission in heavily Er-doped titania-modified aluminium tellurite glasses. J. Non. Cryst. Solids 2007, 353, 2150–2156. [Google Scholar] [CrossRef]
- Stambouli, W.; Elhouichet, H.; Ferid, M. Study of thermal, structural and optical properties of tellurite glass with different TiO2 composition. J. Mol. Struct. 2012, 1028, 39–43. [Google Scholar] [CrossRef]
- Hirdesh; Khanna, A.; Fábián, M.; Dippel, A.-C.; Gotowski, O. Structure of lithium tellurite and vanadium lithium tellurite glasses by high-energy X-ray and neutron diffraction. Acta Crystallogr. Sect. B Struct. Sci. Cryst. Eng. Mater. 2021, 77, 275–286. [Google Scholar] [CrossRef]
- Yahia, I.S.; Saddeek, Y.B.; Sakr, G.B.; Knoff, W.; Story, T.; Romcevic, N.; Dobrowolski, W. Spectroscopic analysis and magnetic susceptibility of CuO–TeO2–V2O5 glasses. J. Magn. Magn. Mat. 2009, 321, 4039–4044. [Google Scholar] [CrossRef]
- Abed, C.; Trabelsi, A.B.G.; Alkallas, F.H.; Fernandez, S.; Elhouichet, H. Transport Mechanisms and Dielectric Features of Mg-Doped ZnO Nanocrystals for Device Applications. Materials 2022, 15, 2265. [Google Scholar] [CrossRef] [PubMed]
- Ben Ali, M.; Elhouichet, H. Electrical and dielectric properties of Ni doped Zn2SnO4 nanoparticles. Ceram. Int. 2000, 46, 28686–28692. [Google Scholar] [CrossRef]
- Sdiri, N.; Elhouichet, H.; Elakermi, E.; Dhifallah, A.; Ferid, M. Structural investigation of amorphous Na2O–P2O5–B2O3 correlated with its ionic conductivity. J. Non Crystalline Solids 2015, 409, 34–42. [Google Scholar] [CrossRef]
- Nasser, R.; Othmen, W.B.H.; Elhouichet, H. Effect of Sb doping on the electrical and dielectric properties of ZnO nanocrystals. Ceram. Int. 2019, 45, 8000–8007. [Google Scholar] [CrossRef]
- Langar, A.; Sdiri, N.; Elhouichet, H.; Ferid, M. Conductivity and dielectric behavior of NaPO3–ZnO–V2O5 glasses. J. Alloy. Compds 2014, 590, 380–387. [Google Scholar] [CrossRef]
- Amara, S.F.C.B.; Hammami, H. Effect of iron oxide on the electrical conductivity of soda-lime silicate glasses by dielectric spectroscopy. J. Mater. Sci. Mater. Electron. 2019, 30, 13543–13555. [Google Scholar] [CrossRef]
- Saeed, M.A.M.; Abdullah, O.G. Effect of Structural Features on Ionic Conductivity and Dielectric Response of PVA Proton Conductor-Based Solid Polymer Electrolytes. J. Electron. Mater. 2020, 50, 432–442. [Google Scholar] [CrossRef]
- Sujatha, B.; Viswanatha, R.; Chethana, B.K.; Bhushana, N.; Reddy, C.N. Electrical conductivity and dielectric relaxation studies on microwave synthesized Na2SO4·NaPO3·MoO3 glasses. Ionics 2015, 22, 563–571. [Google Scholar] [CrossRef]
- Sankarappa, T.; Kumar, M.P.; Devidas, G.B.; Nagaraja, N.; Ramakrishnareddy, R. AC conductivity and dielectric studies in V2O5–TeO2 and V2O5–CoO–TeO2 glasses. J. Molecular Struct. 2008, 889, 308–315. [Google Scholar] [CrossRef]
- Souri, D.; Ghasemi, R.; Shiravand, M. The study of high-dc electric field effect on the conduction of V2O5–Sb–TeO2 glasses and the applicability of an electrothermal model. J. Mater. Sci. 2015, 50, 2554–2560. [Google Scholar] [CrossRef]
- Calahoo, C.; Wondraczek, L. Ionic glasses: Structure, properties and classification. J. Non-Cryst. Solids. X 2020, 8, 100054. [Google Scholar] [CrossRef]
- Desoky, M.M.E.L. Small polaron transport in V2O5–NiO–TeO2 glasses. J. Mater. Sci. Mater. Electron. 2003, 14, 215. [Google Scholar] [CrossRef]
- El-Desoky, M.M. Characterization and transport properties of V2O5-Fe2O3-TeO2 glasses. J. Non. Cryst. Solids 2005, 351, 3139. [Google Scholar] [CrossRef]
- Moawad, H.M.M.; Jain, H.; Ramadan, T.; El-Mallawany, R.; El-Sharbiny, M. Electrical Conductivity of Silver Vanadium Tellurite Glasses. J. Am. Ceram. Soc. 2002, 85, 2655–2659. [Google Scholar] [CrossRef]
- Watthaisong, P.; Jungthawan, S.; Hirunsit, P.; Suthirakun, S. Transport properties of electron small polarons in a V2O5 cathode of Li-ion batteries: A computational study. RSC Adv. 2019, 9, 19483–19494. [Google Scholar] [CrossRef]
- HSidek, A.A.; Rosmawati, S.; Talib, Z.A.; Halimah, M.K.; Halim, S.A. Effect of Zinc on the Elastic Behaviour of (TeO2) 90 (AlF3) 10-x (ZnO) x Glass System. Int. J. Basic Appl. Sci. 2009, 90, 41–44. [Google Scholar]
- Abdel-Khalek, E.; Ali, I.O. Structural, AC conductivity and dielectric properties of vanado-tellurite glasses containing BaTiO3. J. Non-Crystalline Solids 2014, 390, 31–36. [Google Scholar] [CrossRef]
- Mohamed, S.N.; Halimah, M.K.; Subban, R.H.Y.; Yahya, A.K. AC conductivity and dielectric properties in mixed ionic–electronic 20Na2O–20CaO–(60–x)B2O3–xV2O5 glasses. Phys. B Condens. Matter 2020, 602, 412480. [Google Scholar] [CrossRef]
- Kao, K.C. Electric Polarization and Relaxation in Dielectric Phenomena in Solids; Elsevier: Amsterdam, The Netherlands, 2004; pp. 41–114. [Google Scholar]
- Bruce, P. High and low frequency Jonscher behaviour of an ionically conducting glass. Solid State Ionics 1985, 15, 247–251. [Google Scholar] [CrossRef]
- Murugaraj, R. Ac conductivity and its scaling behavior in borate and bismuthate glasses. J. Mater. Sci. 2007, 42, 10065–10073. [Google Scholar] [CrossRef]
- Prezas, P.R.; Soares, M.J.; Freire, F.N.A.; Graça, M.P.F. Structural, electrical and dielectric characterization of TeO2-WO3-Y2O3-Er2O3-Yb2O3 glasses. Mater. Res. Bull. 2015, 68, 314–319. [Google Scholar] [CrossRef]
- Othmen, W.B.H.; Sdiri, N.; Elhouichet, H.; Férid, M. Study of charge transport in Fe-doped SnO2 nanoparticles prepared by hydrothermal method. Mat. Sci. Semicon. Proc. 2016, 52, 46–54. [Google Scholar] [CrossRef]
- Elliott, S.R. A theory of a.c. conduction in chalcogenide glasses. Philos. Mag. A J. Theor. Exp. Appl. Phys. 2017, 36, 8. [Google Scholar] [CrossRef]
- Cole, K.S.; Cole, R.H. Dispersion and absorption in dielectrics: II. Direct current characteristics. Chem. Phys. 1942, 10, 98–105. [Google Scholar] [CrossRef]
- Bouslama, W.; Ben Ali, M.; Sdiri, N.; Elhouichet, H. Conduction mechanisms and dielectric constant features of Fe doped ZnO nanocrystals. Ceram. Int. 2021, 47, 19106–19114. [Google Scholar] [CrossRef]
- Moynihan, C.T. Analysis of electrical relaxation in glasses and melts with large concentrations of mobile ions. J. Non-Crystalline Solids 1994, 172, 1395–1407. [Google Scholar] [CrossRef]
- Rayssi, C.; el Kossi, S.; Dhahri, J.; Khirouni, K. Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca0.85Er0.1Ti1-xCo4x/3O3 (0 ≤ x ≤ 0.1). RSC Adv. 2018, 8, 17139–17150. [Google Scholar] [CrossRef] [PubMed]
- Macedo, P.B.; Moynihan, C.T.; Bose, R. Role of ionic diffusion in polarization in vitreous ionic conductors. Phys. Chem. Glas. 1973, 13, 171–179. [Google Scholar]
- Tabib, A.; Sdiri, N.; Elhouichet, H.; Férid, M. Investigations on electrical conductivity and dielectric properties of Na doped ZnO synthesized from sol gel method. J. Alloy. Compd. 2015, 622, 687–694. [Google Scholar] [CrossRef]
T° | Bulk Region | Interfacial Impedance | ||||
---|---|---|---|---|---|---|
n1 | Ab (F cm2 sn−1) | Rb (Ω) | n2 | Aint (F cm2 sn−1) | Rint (Ω) | |
240 | 0.90 | 6.03 × 10−10 | 2.14 × 106 | 0.67 | 3.4 × 10−6 | 6.83 × 106 |
260 | 0.85 | 9.03 × 10−10 | 1.38 × 106 | 0.68 | 1 × 10−5 | 6.4 × 106 |
280 | 0.85 | 1.91 × 10−9 | 0.83 × 106 | 0.79 | 3.2 × 10−6 | 6.0 × 106 |
300 | 0.85 | 1.03 × 10−9 | 0.42 × 106 | 0.81 | 6.5 × 10−6 | 5.63 × 106 |
320 | 0.84 | 1.34 × 10−9 | 0.24 × 106 | 0.79 | 31 × 10−5 | 4.82 × 106 |
340 | 0.83 | 1.53 × 10−9 | 0.24 × 106 | 0.82 | 11 × 10−5 | 2.74 × 106 |
LPMg [15] | 0.84 | 1.35 × 10−10 | 0.13 × 106 | |||
NPZV10 [21] | 0.86 | 1.774 × 10−12 | 0.136 × 105 | 0.87 | 4.84 × 10−11 | 0.54 × 106 |
PVB2.25 [18] | 0.89 | 4.15 × 10−11 | 4.5 × 105 | 0.87 | 2.7 × 10−12 | 2.3 × 105 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mechrgui, I.; Ben Gouider Trabelsi, A.; Alkallas, F.H.; Nasri, S.; Elhouichet, H. Mixed Ionic and Electronic Conduction in TeO2-ZnO-V2O5 Glasses towards Good Dielectric Features. Materials 2022, 15, 7659. https://doi.org/10.3390/ma15217659
Mechrgui I, Ben Gouider Trabelsi A, Alkallas FH, Nasri S, Elhouichet H. Mixed Ionic and Electronic Conduction in TeO2-ZnO-V2O5 Glasses towards Good Dielectric Features. Materials. 2022; 15(21):7659. https://doi.org/10.3390/ma15217659
Chicago/Turabian StyleMechrgui, Imen, Amira Ben Gouider Trabelsi, Fatemah. H. Alkallas, Saber Nasri, and Habib Elhouichet. 2022. "Mixed Ionic and Electronic Conduction in TeO2-ZnO-V2O5 Glasses towards Good Dielectric Features" Materials 15, no. 21: 7659. https://doi.org/10.3390/ma15217659
APA StyleMechrgui, I., Ben Gouider Trabelsi, A., Alkallas, F. H., Nasri, S., & Elhouichet, H. (2022). Mixed Ionic and Electronic Conduction in TeO2-ZnO-V2O5 Glasses towards Good Dielectric Features. Materials, 15(21), 7659. https://doi.org/10.3390/ma15217659