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Abstract: The melt-quenching technique was used to synthesize tellurite glasses of the chemical
composition 80TeO2-(20-x) ZnO-xV2O5. X-ray diffraction (XRD) patterns indicate the amorphous
nature of the prepared glasses. Raman and FTIR measurements demonstrate a progressive substi-
tution of the Te-O-Te linkages by the Te-O-V bridges and the formation of VO4 and VO5 units by a
change of the vanadium coordination due to the higher number of oxygens incorporated by further
addition of V2O5. The AC conductivity was investigated in the frequency range of 40 Hz to 107

Hz between 473 K to 573 K. A good coherence of the AC conductivity was found using a model
correlating the barrier hopping (CPH) and the dominant conduction process changes from ionic to
polaronic with the addition of V2O5. The dielectric constant exhibits high values in the range of lower
and medium frequencies. Both variations of the electric modulus and the dielectric loss parameters
with frequency and temperature showed a relaxation character mainly assigned to the vanadate
phases. The electric modulus displays a non-Debye dielectric dispersion and a relaxation process.
The present results open the door to future zinc-tellurite glasses-doped vanadium exploitation as a
potential electrolyte-based material for solid-state batteries.

Keywords: tellurite glasses; ionic conduction; polaronic hopping; high dielectric constant; dielectric
loss; modulus

1. Introduction

Zinc-tellurite glass is extensively known to have good chemical durability and trans-
mission capability, high dielectric constant and refractive indices, perfect infrared trans-
mission, and low melting points. This kind of glass has been widely applied in industry in
memory devices, micro-structured optical fibers, and switching due to its good semicon-
ducting properties [1–3]. Recently, zinc-tellurite glass doped with heavy metal oxides has
received great scientific interest due to the major role that such oxides play in improving
optical and electrical properties of these glasses [4–7].

In earlier studies [8,9], we showed that structural, optical, electrical, and dielectric
properties of glass are extremely dependent on the glass composition. Particularly, the
addition of V2O5 to the glassy network highly contributes in reducing dielectric losses
through the activation of the conduction mechanism by providing V4+ and V5+ ions in the
valence state, which favors the hopping of small polaron [8,10]. Thus far, the structural,
vibrational, electrical, dielectric, and modulus properties of tellurite glass doped using
various amounts of V2O5 need further investigations and correlations between all the results
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to understand the key rules of vanadate ions in glass structure and its conduction process.
This will identify the vanadate ions’ impact on the modification of the network structure
and consequently will define the conduction mechanism and dielectric constant of the glass
through V2O5. Such a find will advance energy storage and nonlinear optical applications.

To the best of our knowledge, only a few studies so far considered the effect of
V2O5 on the structural, thermal, vibrational, electrical, and dielectric properties of zinc-
tellurite glass. Herein, we investigate all these properties on (80-x)TeO2 + 20ZnO + xV2O5
glasses with various concentrations of V2O5 (x = 0, 5, 10, and 15 mol %). The electrical
conductivity and dielectric studies cover a wide frequency region (40 Hz to 107 Hz) and a
wide temperature range varying from 423 K to 523 K. This elucidates the changes of the
conduction mechanism in response to the variation of the frequency and V2O5 composition.
Furthermore, the dependency of the dielectric constant and dielectric loss as a function of
frequency, temperature, and V2O5 content are determined. The suitability of the present
glass for devices application is provided.

2. Experimental

Vanadium-doped zin-tellurite glasses with the chemical composition (80-x)
TeO2 + 20 ZnO + xV2O5 (x = 0, 5, 10, and 15 mol %) were prepared using the traditional
melt-quenching method. The prepared samples are denoted as TZV0, TZV5, TZV10, and
TZV15. Commercial reagents in the form of TeO2, ZnO, and V2O5 powders with 99.99%
purity were well-mixed in appropriate proportions in a tungsten crucible and melted in
an electric furnace at 900 ◦C for 2 h. To avoid the thermal chocs and release the remnant
mechanical stress, we first rapidly quenched the melt by dropping into a stainless-steel
plate maintained at 200 ◦C; then, immediately after quenching, the as-prepared samples
were annealed at 300 ◦C (<Tg: glass transition temperature) for 2 h to be later placed at
room temperature to cool down slowly. Therefore, the glass was polished using a fine
emery paper to prepare disk-shape samples (of a diameter (d = 12 ± 0.1 mm) at a thickness
(e = 2 ± 0.1 mm)) suitable for the optical and electrical characterization.

X-ray diffraction (XRD) patterns were recorded at room temperature using a Philips
X’pert diffractometer (Philips, Amsterdam, The Netherland) equipped with Cu X-ray
tube (λ = 1.54 A◦), at 40 kV and 100 mA. For thermal measurements, differential scan-
ning calorimetry (DSC) technique (Melter Toldo DSC823e) was used (Mettler Toledo AG,
Switzerland). The DSC scans were performed on 20 mg glass powder at a heating rate
of 10 ºC/min in N2 atmosphere using platinum pans. Raman spectra were measured
using Labram HR spectrometer (Horiba Scientific, Irvine, CA, USA) and He-Ne laser
(λ = 632 nm) as the excitation source. The structures of all the glass samples were exam-
ined via Perkin-Elmer (FTIR 2000, Waltham, MA, USA) spectrometer, and all IR transmit-
tance spectra were collected in the range of 400–1200 cm−1 with a resolution of 4 cm−1.
An Agilent 4294A (Santa Clara, CA, USA) impedance analyzer was utilized to measure
the complex impedance versus the frequency (40 Hz–107 Hz) at different temperatures
(240 ◦C–360 ◦C).

3. Results and Analysis
3.1. DSC, XRD, Raman, and FTIR Analysis

From the DSC curves (Figure 1), the glass transition temperature Tg was estimated
to 332 ◦C and 386 ◦C for the samples TZV0 and TZV15, respectively, with an accuracy of
±3 ◦C. The tendency of Tg is to increase with the added amount of V2O5, which contributes
to the good thermal stability of the TZV glasses.
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Figure 1. DSC curves of the as synthesized glasses.

Figure 2 represents a typical XRD pattern relative to the TZV5 glass after thermal
treatment at 300 ◦C. A broad scattering at lower angles was the only observed signature of
disordered structure. This evidenced the amorphous nature of the prepared glasses.
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Figure 2. X-ray diffraction pattern of the TZV5 glass.

The Raman spectra of the glasses are illustrated in Figure 3. The band appearing at low
frequencies (around 115 cm−1) is relative to the Boson vibration. This latest development
is defined as the collective motions of atoms’ acoustic phonons within the medium-range
of glasses that characterize the disorder and the amorphous structures [6]. The Raman
band at 210 cm−1 corresponds to the vibrations of trigonal pyramidal (tp) TeO3 groups
overlapped with bands originated by V-O-V and/or V-O-Te vibrations [11]. On the other
hand, the band at 424 cm−1 is ascribed to both the bending and stretching vibrations of
Te-O in Te-O-Te or O-Te-O linkages, where oxygen is alternatively in an axial or equatorial
position [5]. The large Raman band at 665 cm−1 is relative to Te-O stretching vibration in
the (TeO4) tbp units [5,12]. Brovelli et al. [13] suggested that this band is relative to the
crystalline phase α-TeO2. The shoulder appearing at about 740 cm−1 is reported to be due
to the presence of non-bridging oxygen (NBO) in some tellurium structural units [5,14].
The band situated around 915 cm−1 is ascribed to the V-O stretching vibration in (VO4)
units [15]. As the V2O5 content increases from 0 to 15 mol %, the Raman bands slightly
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shifted to a higher frequency, while their intensities decreased owing to the generation of
NBOs at both the equatorial and axial positions, which leads to the formation of new bonds
of Te-eqO-V+, Te-axO-V+, and also Te=O.
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Figure 3. The Raman spectra of the TZV glasses.

The shoulder appearing at higher frequencies (1000 cm−1) for 15 mol % of V2O5 is
explained from the contribution of the new vibrations V=O (relative to the (VO5) units)
and V-NBO [16]. The spectral recovery between all the Vanadyl vibrations results in the
observed shoulder. The presence of both (VO4) and (VO5) units evidences the existence of
the V4+ and V5+ ions in the glassy network.

Thus, the evolution of vanadate vibrations underlines the destruction of Te-O-Te
chains and the tendency of V2O5 to act as network former with creation of V4+, V5+ ions,
and NBO defects.

The FTIR spectrum of the TZV0 sample showed principally three peaks located at 470,
670, and 920 cm−1 (see Figure 4). The band located at around 470 cm−1 is assigned to the
bending vibrations of Te-O-Te or O-Te-O linkages [5]. The broader band positioned between
600 and 750 cm−1 is an overlapping of two bands: the first, centered at 670 cm−1, is related
to the stretching vibration of equatorial and axial Te-O bonds in the (TeO4) trigonal bi-
pyramid units (bridging oxygen (BO)) [11]. The second band that appears above 700 cm−1

is ascribed to the Te-O vibration in (TeO3) trigonal pyramid units (tp) with non-bridging
oxygen (NBO) [5]. At a lower amount of V2O5, the vanadate ions enter the glass network
by breaking up the Te-O-Te, bonds resulting in dangling bonds (Te-O-V) that decrease TeO3
units by forming (TeO4) ones [14]. The variation of the intensity depends highly on the
increase of the number of TeO3/TeO3+1 units at the expense of the number of (TeO4) units.
The appearance of a new band centered at around 920 cm−1 is related to the stretching
vibrations of V=O linkages in the pentahedral (VO5) units [15].

In conclusion, both Raman and FTIR analyses revealed a partial transformation of
VO4 units to VO5 by a change of the vanadium coordination due to the higher number of
oxygens incorporated by the addition of V2O5.
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Figure 4. The FTIR spectra of the TZV glasses.

3.2. Impedance Spectroscopy
3.2.1. Nyquist Spectra

Figure 5 shows a complex impedance Cole–Cole plots for the different glass samples,
i.e., TZV0, TZV5, TZV10, and TZV15, at the temperature T = 340 ◦C. The inset figure
represents the suggested equivalent circuit to investigate the electrical properties of the
glasses. In these semi-circles, a slight degree of decentralization can be detected since
their centers are located below the axis of the real part Z′ of the impedance. The result
shows a non-Debye-type relaxation for all samples. The deviation to a Debye profile in the
current system could be attributed to the formation of macroscopic dipole groups and/or
the formation of non-polar clusters [17].
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In this regard, we may consider each semicircle equal to a circuit composed of two
parallel RC elements connected in series. As the semicircle is dissymmetric, and its center is
below the real axis, we used a constant phase element (CPE) instead of the ideal capacitor.
The total impedance of the equivalent circuit is given by:

Z∗ = Z′ + jZ′′ =
(

1
Rb

+
1

ZCPEb

)−1
+

(
1

Rint
+

1
ZCPEint

)−1
(1)

where Z′ and Z” designed the real and imaginary parts of the total impedance.
The impedance of the CPE is defined via [18]:

ZCPE =
1

A(jω)n (2)

where j is the imaginary unit (j2 = −1) and ω the angular frequency (ω = 2πf, f the
frequency), with A being a constant independent of frequency [19]. n is an exponent index
measuring the arc depression ranging between zero and unity and determines the degree
of deviation from an exact semicircle.

In Equation (2), when the constant n = 1, we are in the case of a typical Debye behavior
where the CPE behaves as an ideal capacitor with a value A = C, and it acts as a pure resistor
in case n = 0 and takes the value R = 1/A. More calculation details of the parameter n were
given in our previous work [19].

The semicircles were well-fitted based on the expressions of both Z′ and Z′′ :

Z′ =
Rb∗(1+Rb∗Ab∗ωn1∗cos( π

2 n1))
1+2∗Rb∗Ab∗ωn1∗cos( π

2 n1)+(Rb∗Ab∗ωn1 )2

+
Rint∗(1+Rint∗Aint∗ωn2∗cos( π

2 n2))
1+2∗Rint∗Aint∗ωn2∗cos( π

2 n2)+(Rint∗Aint∗ωn2 )2

(3)

−Z′′

=
Rb

2∗Ab∗ωn1∗sin( π
2 n1)

1+2∗Rg∗Ag∗ωn1∗cos( π
2 n1)+(Rg∗Ag∗ωn1)

2

+
Rgb

2∗Agb∗ωn2∗sin( π
2 n2)

1+2∗Rint∗Aint∗ωn2∗cos( π
2 n2)+(Rint∗Aint∗ωn2 )2

(4)

where Rb and Ab designed the resistive and capacitive components of the bulk region,
respectively. Rint and Aint are the resistive and capacitive components of the interfacial
impedance that correspondingly determine the space charge polarization [17]. The parame-
ters n1 and n2 are the exponential indexes relatives to the bulk region and the interface.

A good agreement between the experimental and theoretical values is obtained for
TZV5 at 280 ◦C (see Figure 6). This demonstrates the suitability of the equivalent circuit in
well-describing the electrical properties of the glasses. The resulting parameters A and n
indicate a non-ideal Debye-like behavior since the arc plot (Z′ ′ vs. Z′) is depressed for all
the V2O5 content, and its center is below the real axis [20,21]. We attribute the deviation
from the Debye profile to the formation of macroscopic dipole groups and/or nonpolar
clusters [22].

The parameters of the equivalent circuit model are obtained based on the complex
impedance Z* formula for sample TZV5 at different temperatures (see Figure 7).
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the ionic absorption [23], which favors the ionic conductivity. On the other hand, the de-
crease in Rb leads to an increase of the polaronic conductivity [15]. Indeed, both processes 
contribute to the total conductivity. Hence, the particular decrease of the radius of the 
semicircle in the Nyquist diagram observed for the TZV5 at 340 °C and its shift to high 
frequencies could be assigned to the low value of Rb compared to the other samples. Thus, 

Figure 7. Experimental and theoretical impedance diagrams of the sample TZV5. Inset is the
corresponding equivalent circuit at different temperatures.

The refinement results and comparisons with other works are listed in Table 1 [8,9,14].
The calculation demonstrates a gradual decrease with increasing temperature for the
interfacial resistance Rint and bulk resistance Rb. The diminution of Rint is assigned to the
ionic absorption [23], which favors the ionic conductivity. On the other hand, the decrease in
Rb leads to an increase of the polaronic conductivity [15]. Indeed, both processes contribute
to the total conductivity. Hence, the particular decrease of the radius of the semicircle in the
Nyquist diagram observed for the TZV5 at 340 ◦C and its shift to high frequencies could be
assigned to the low value of Rb compared to the other samples. Thus, the conductivity is
remarkably increased at this temperature. On the other hand, the higher the value of Rint is,
the less the hopping of the charge carriers with polaron occurs.
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Table 1. The best-fitting values of equivalent circuit elements in Figure 7 for different temperatures.

T◦
Bulk Region Interfacial Impedance

n1
Ab (F cm2

sn−1) Rb (Ω) n2
Aint (F cm2

sn−1) Rint (Ω)

240 0.90 6.03 × 10−10 2.14 × 106 0.67 3.4 × 10−6 6.83 × 106

260 0.85 9.03 × 10−10 1.38 × 106 0.68 1 × 10−5 6.4 × 106

280 0.85 1.91 × 10−9 0.83 × 106 0.79 3.2 × 10−6 6.0 × 106

300 0.85 1.03 × 10−9 0.42 × 106 0.81 6.5 × 10−6 5.63 × 106

320 0.84 1.34 × 10−9 0.24 × 106 0.79 31 × 10−5 4.82 × 106

340 0.83 1.53 × 10−9 0.24 × 106 0.82 11 × 10−5 2.74 × 106

LPMg [15] 0.84 1.35 × 10−10 0.13 × 106

NPZV10 [21] 0.86 1.774 × 10−12 0.136 × 105 0.87 4.84 × 10−11 0.54 × 106

PVB2.25 [18] 0.89 4.15 × 10−11 4.5 × 105 0.87 2.7 × 10−12 2.3 × 105

3.2.2. Electrical Conductivity

The DC conductivity is expressed as follows:

σdc =
e

SRb
(5)

S is the area, and e is the thickness of the sample. Rb is the bulk resistance defined in
the previous section.

Figure 8 illustrates the Arrhenius behavior of the DC conductivity:

σdcT = σ0exp(
−Ea

KBT
) (6)

where σ0 is the pre-exponential factor, Ea is the activation energy for conduction, KB is the
Boltzmann constant, and T represents the absolute temperature.

1 
 

 
Figure 8. Arrhenius plots of electric dc conductivity of the TZV glasses.
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Ea could be calculated using the fitted curves σDCT against reciprocal temperature
(1000/T) as listed in Table 2 and compared to other glasses [18,24,25]. The highest and the
lowest values of Ea were founded for the TZV10 and TZV15 glasses, correspondingly.

Table 2. Activation energies of the prepared samples and comparison with bibliography.

Host Materials Ea (eV) References

TZV0 1.02 Present work

TZV5 0.78 Present work

TZV10 1.13 Present work

TZV15 0.62 Present work

NPZV20 0.92 [21]

90TeO2-10V2O5 0.428 [25]

10V2O5-Sb15-90TeO2 0.334 [26]

NPM5 0.91 [27]

The curves describing the variations of Ea and σDC (at 300 ◦C) with V2O5 content show
a competition between two conduction mechanisms (see Figure 9).
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Figure 9. Variation of the activation energy Ea and the conductivity σDC at 573 K with the V2O5 
content in zinc-tellurite glass samples. 
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ionic mobility [29]. This leads to incompatible changes in bulk domain resistance and in-
terfacial contribution, raising a challenge between the polaron and ionic conduction dom-
ination. Therefore, both electrons and holes could be associated with the local defects. 
Consequently, the activation energy may also include an energy to liberate the charge 
carrier from its position next to the defect [30]. 
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content in zinc-tellurite glass samples.

Indeed, two independent paths of conduction mechanisms exist so far. The first is
due to the exchange interaction of V4+-O–V5+ chains, while the second corresponds to
ionic conductivity described through the migration position of non-bridging oxygen along
the network-former chains [27]. The electronic conduction is explained using polaron
hopping between V+4 and V+5 [28]. Moreover, further addition of vanadium generates
larger columbic attraction force between ions and polarons, which reduces the electronic
and ionic mobility [29]. This leads to incompatible changes in bulk domain resistance
and interfacial contribution, raising a challenge between the polaron and ionic conduction
domination. Therefore, both electrons and holes could be associated with the local defects.
Consequently, the activation energy may also include an energy to liberate the charge
carrier from its position next to the defect [30].

Stambouli et al. [14] demonstrated the incorporation impact of a modified oxide in
the tellurium network. Indeed, an important increase of the number of non-bridging
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oxygens was found through a gradual replacement of trigonal bipyramids (TeO4) units
with trigonal pyramids (TeO3) through (TeO3+1). Thus, new units emerged in the glassy
host with a high ability in switching conductivity from ionic to electronic with the V2O5
amount. The ionic conductivity dominated the conduction mechanism up to 10 mol%
of V2O5., while the electronic conductivity was predominant above 10 mol %. In fact,
polarons were formed from holes in the valence band, where charge carriers induce strong,
localized lattice distortions forming a “small” polarons conduction [21,31]. The weak
value of the activation energy observed for TZV5 could be explained by the governance
of the ionic conduction, while the predominance of polaronic mechanism is assigned to
the rising of the polaronic population. Hence, local structural deformation may be due
to phonons and electrons transfer through hopping from lower to higher valence state.
This effect is assigned to the dominance of the activation energy value associated with
the predominance of electronic conduction illustrated through the formation of VO4 and
VO5 structural units in the glassy network, as it was concluded from Raman analysis.
Indeed, Raman spectra reveal the increase of the NBO with the V2O5 content since the
intensity bands around ~210 cm−1 increase with a maximum for 10% mol V2O5. This could
also explain the higher value of the activation energy for this sample. The co-existence of
both ionic and polaronic mechanisms remains of important interest for electrochemical
devices [31]. Similar behaviors related to the change of conduction process have been
reported. The change of conduction mechanism has been detected for vanado-phosphate
and vanado-tellurite glasses [4,32,33].

The nonlinear behavior of the isothermal σDC within the V2O5 composition could be
explained by the ion–small polaron correlation process (Figure 10), where the cation–small
polaron displays a similar motion that is identical to a neutral entity without affecting the
conductivity [28,30].
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Figure 10. Variation versus frequency of the AC conductivity (σAC) of TZV5 glass at different temperatures.

The AC conductivity σAC is calculated using the expression [34]:

σac =
e
A

Z′

(Z′2 + Z′′2)
(7)

σDC remains unchanged in the range of lower frequencies, which corresponds to
the DC conductivity (see Figure 10). However, in the range of high frequencies, the
curves demonstrate dispersion where the slope changes to higher values with increasing
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temperature. This consequently changes the conductivity from the regime of frequency
independence to the regime of frequency dependence, highlighting the conductivity re-
laxation phenomenon [35]. Hence, the necessary energy for the charge mobility at high
frequencies over a short range is more important than the needed energy at low frequencies
over a long range. The increase of σAC within the frequency sustains the hypothesis of the
dominance of the hopping process in the conduction mechanism [21]. Eventually, thermally
activated electrical conduction is defined as charge carriers hopping from a localized site to
another with increasing temperature.

The nature and the mechanism of the conductivity dispersion in solids are generally
analyzed using Jonscher’s power law [36,37]:

σ = σdc + A ωs (8)

where σDC is the dc conductivity, and A ωs represents the AC conductivity. The parameter A
determines the polarizability strength [5], and the exponent s (0 < s < 1) provides the interaction
degree between the mobile charges and the lattice [38]. A and s are temperature-dependent.

Herein, “s” was found to slightly decrease from 0.77 to 0.71 with increasing tempera-
ture from 260 ◦C to 320 ◦C. This is due to the slight disorientation of the electric dipoles
with increasing the thermal agitation [39]. Thus, the ionic conduction replaces the polaronic
process, while the AC conductivity is explained through the correlated barrier hopping
(CBH) model given by Elliot et al. [40]. In this model, the exponent s is written as:

s = 1− 6KBT
Wm

(9)

where Wm is designated as the energy barrier.

3.2.3. Analysis of Dielectric Constant

The real and imaginary parts ε′ and ε” of the dielectric constant are expressed as [41,42]:

ε′ = −Z′′ωC0

(
Z′2 + Z′′2

)
(10)

ε′′ = Z′ωC0

(
Z′2 + Z′′2

)
(11)

where C0 is designated as the void capacitance (C0 = ε0S/e, S and e are the surface area and
the sample thickness, respectively).

Figure 11a shows a decrease of the dielectric constant ε′ relative to TZV15 with the
applied frequency while it increases with temperature. This is assigned to the electron hop-
ping between two different sites [43]. The high values of ε′ in the range of low frequencies
(Figure 11b) are related to charges accumulation at the interfaces between the electrodes
and the glass, e.g., interfacial polarization [44]. The behavior of dielectric permittivity with
frequency is related to the polarizability loss of some species since the hopping carriers
are unable to follow the applied field [42], and their oscillations vanish with time. The
relatively high values of ε′ relative to the TZV5 glass in the regions of low and medium
frequencies make of it an appropriate material for optical devices [42].

The variation of the imaginary part ε” for the TZV15 glass versus the frequency at
different temperatures is given by Figure 12a. Here, ε” decreases gradually with the fre-
quency up to 103 Hz and then reaches a constant value ε” (∞), revealing the weak dielectric
loss in the range of medium and higher frequencies. Indeed, the dielectric loss usually
varies with charge polarization, ionic transport, and energy diversion. Thus, the behavior
of ε” with the variation of the frequency could be ascribed to the fast polarization process
occurring in the glass host under the applied field in addition to the dipoles generated by
the electrode–electrode interface owing to the charge carriers accumulations [39,45].
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Figure 12b shows the variation of the dielectric loss ε” with the logarithmic frequency
for all glass samples at 340 ◦C. ε” increases with the V2O5 content till 10 mol % and then
falls. The lowest value of ε” is obtained for the TZV15 sample due to the formation of new
phases related to vanadate (as shown from the Raman analysis), which acts as a barrier
and limits the ions diffusion in the glassy host to contribute to the large reduction of the
dielectric loss. It indicates the suitability of this glass for applications in photonics as
electro-optic devices and nonlinear optical material.

The study of electric modulus is needed to provide deep insights into the processes of
charge transport, such as relaxation phenomenon and ion dynamics. The electric modulus
can be expressed as:

M* = M′(ω) + j M”(ω) (12)

where
M′(ω) =ωC0Z” (13)

M”(ω) =ωC0Z′ (14)

Here, C0 is the vacuum capacitance of the cell.
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(b) all TZV glass samples at T = 340 ◦C.

The very small value of M′ in the region of lower frequencies indicates the suppression
of the electrode polarization and the absence of long-range conduction (see Figure 13). The
continuous dispersion of M′ with increasing frequency and for all the temperatures informs
that the conduction process is assured through short-range mobility of charge carriers in all
the glasses. This process is related to the weak restoring force in the glasses that governs
the mobility of charge carriers under the influence of the applied electric field [39].
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Figure 13. The frequency dependence of M’ for TZV15 at different temperatures.

The imaginary part M” represents a maximum peak M”max within the frequency (see
Figure 14a). In the frequency region below the M” peak, the polarons drift to long distances,
whereas, for the frequency range above the peak, the polarons are confined to potential
wells where they are free to move. Therefore, the peak frequency represents the transition
from long- to short-range mobility [46]. The asymmetric curve of M” and its variation
within the frequency at each temperature suggested a spread of the relaxation times, which
can be related to a process of coupling of the individual relaxation: one site needs to relax
before the other can be done [8]. On the other hand, the shift towards higher frequencies of
the relaxation peak with increasing temperature indicates the dependance of the relaxation
process on temperature.

Figure 14b displays the M” curves versus frequency, at T = 340 ◦C, for all the V2O5
compositions. The peak position is very sensitive to the V2O5 content. The band relative
to x = 10 mol % is importantly shifted to the high-frequencies range. This is related to
the polarization effects of mobile ions hopping, which suggests that the relaxation time of
this glass sample is lowest compared to the other glass samples. Moreover, the curve of
M”(ω) confirms a large relaxation peak for the distribution, which informs again about a
non-Debye model for the studied glasses.

Further information about the relaxation process can be obtained by analyzing the
Nyquist curves (see, Figure 15). Since these curves are semicircles, and their centers are
below the horizontal axis, the relationship is of a non-Debye model (single relaxation time)
and corresponds to an electric relaxation and intercorrelated activation energy [24].

As shown in Figure 16, the plot of the relaxation time τ versus 1/T suggests the
activation law [42]:

τ = τ0 exp
(
− Er

KBT

)
(15)
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glass samples at T = 340 ◦C.
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Figure 16. Variation of relaxation time versus 1000/T for TZV15 sample.

From a linear fitting, the relaxation energy is estimated to Er = 0.51 eV. This value
is quite different from the calculated activation energy (Ea = 0.61 eV) using Equation (6).
Hence, the incompatibility between the two energies indicates that the barrier height
differences between the long and short distances travelled by charge carriers are not
noticeable, as is highlighted by Macedo et al. [45]. Thus, the non-statistic distribution of the
dipoles informs us about the arbitrary nature of conductivity. Hence, dipoles relaxation is
manifested as arbitrary [9,46].

4. Conclusions

TeO2-ZnO glass systems doped with different amounts of V2O5 were prepared via
the melt-quenching method. The present study clearly shows an altering of the structural,
electrical, and dielectric properties of TeO2-ZnO glasses from addition of V2O5. The main
conclusions can be mentioned as follows:
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- The glass transition temperature Tg was found to increase with the V2O5 content in
the glass.

- Both IR and Raman studies revealed a depolymerization of the glass network with
rising the V2O5 concentration. A progressive change of the (VO4) groups to (VO5)
units was shown when V2O5 composition was more than 10% by a change of the
vanadium coordination due to the higher amount of NBO.

- The conductivity of the glass is assured by a mixed ionic-polaronic process with
a dominance of the ionic contribution up to 10% of V2O5, whereas the polaronic
component becomes the more significant above this concentration due to the exchange
of polarons between V4+ and V5+.

- Variations of electric modulus and the dielectric loss with frequency and temperature
exhibited dipolar relaxation effects mainly caused by the vanadate phases. In addition,
the electric modulus variation shows a non-Debye dielectric dispersion.

- The decrease of the exponent “s” with temperature is consistent with the CBH process.

The good dielectric performances of the glass, such as the relatively higher dielectric
constant and the low dielectric losses, are attractive for applications in optoelectronics,
energy storage, and nonlinear optics.
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