V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Catalysts and Supports
2.2.1. Synthesis of Mesoporous Pure Silica and Nb-Doped SBA-15
2.2.2. Preparation of VTPP Encapsulated in Mesoporous Material
2.2.3. Preparation of SiO2-Supported VTPP Catalysts
2.3. Characterization of Catalysts and Supports
2.4. Electrochemical Measurements
3. Results and Discussion
3.1. Characterization of Catalysts
3.2. Electrochemical Results
3.3. Photoelectrochemical Properties
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Strianese, M.; Pappalardo, D.; Mazzeo, M.; Lamberti, M.; Pellecchia, C. The contribution of metalloporphyrin complexes in molecular sensing and in sustainable polymerization processes: A new and unique perspective. Dalton Trans. 2021, 50, 7898–7916. [Google Scholar] [CrossRef]
- Shi, Y.; Zhang, F.; Linhardt, R.J. Porphyrin-based compounds and their applications in materials and medicine. Dyes Pigm. 2021, 188, 109136. [Google Scholar] [CrossRef]
- Park, J.M.; Lee, J.H.; Jang, W.-D. Applications of porphyrins in emerging energy conversion technologies. Coord. Chem. Rev. 2020, 407, 213157. [Google Scholar] [CrossRef]
- Yamazaki, S.-I. Metalloporphyrins and related metallomacrocycles as electrocatalysts for use in polymer electrolyte fuel cells and water electrolyzers. Coord. Chem. Rev. 2018, 373, 148–166. [Google Scholar] [CrossRef]
- Singh, G.; Chandra, S. Unravelling the structural-property relations of porphyrinoids with respect to photo- and electro-chemical activities. Electrochem. Sci. Adv. 2021, in press. [Google Scholar] [CrossRef]
- Gotico, P.; Halime, Z.; Aukauloo, A. Recent advances in metalloporphyrin-based catalyst design towards carbon dioxide reduction: From bio-inspired second coordination sphere modifications to hierarchical architectures. Dalton Trans. 2020, 49, 2381–2396. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Piñeiro, M.; Dias, L.D.; Pereira, M.M. Hydrogen Peroxide and Metalloporphyrins in Oxidation Catalysis: Old Dogs with Some New Tricks. ChemCatChem 2018, 10, 3615–3635. [Google Scholar] [CrossRef]
- Zhang, W.; Dynes, J.J.; Hu, Y.; Jiang, P.; Ma, S. Porous metal-metalloporphyrin gel as catalytic binding pocket for highly efficient synergistic catalysis. Nat. Commun. 2019, 10, 1913. [Google Scholar] [CrossRef] [Green Version]
- Hiroto, S.; Miyake, Y.; Shinokubo, H. Synthesis and Functionalization of Porphyrins through Organometallic Methodologies. Chem. Rev. 2017, 117, 2910–3043. [Google Scholar] [CrossRef]
- Barona-Castaño, J.C.; Carmona-Vargas, C.C.; Brocksom, T.J.; de Oliveira, K.T. Porphyrins as Catalysts in Scalable Organic Reactions. Molecules 2016, 21, 310. [Google Scholar] [CrossRef]
- Rybicka-Jasinska, K.; Shan, W.; Zawada, K.; Kadish, K.M.; Gryko, D. Porphyrins as Photoredox Catalysts: Experimental and Theoretical Studies. J. Am. Chem. Soc. 2016, 138, 15451–15458. [Google Scholar] [CrossRef]
- Simonneaux, G.; Tagliatesta, P. Metalloporphyrin catalysts for organic synthesis. J. Porphyr. Phthalocyanines 2004, 8, 1166–1171. [Google Scholar] [CrossRef]
- Szymczak, J.; Kryjewski, M. Porphyrins and Phthalocyanines on Solid-State Mesoporous Matrices as Catalysts in Oxidation Reactions. Materials 2022, 15, 2532. [Google Scholar] [CrossRef] [PubMed]
- Fagadar-Cosma, E.; Enache, C.; Vlascici, D.; Fagadar-Cosma, G.; Vasile, M.; Bazylake, G. Novel nanomaterials based on 5,10,15,20-tetrakis(3,4-dimethoxyphenyl)-21H,23H-porphyrin entrapped in silica matrices. Mat. Res. Bull. 2009, 44, 2186–2193. [Google Scholar] [CrossRef]
- Mo, L.Q.; Huang, X.F.; Wang, G.C.; Huang, G.; Liu, P. Full use of factors promoting catalytic performance of chitosan supported manganese porphyrin. Sci. Rep. 2020, 10, 14132. [Google Scholar] [CrossRef]
- Berijani, K.; Hosseini-Monfared, H. Collaborative effect of Mn-porphyrin and mesoporous SBA-15 in the enantioselective epoxidation of olefins with oxygen. Inorg. Chim. Acta 2018, 471, 113–120. [Google Scholar] [CrossRef]
- Dare, N.A.; Egan, T.J. Heterogeneous catalysis with encapsulated haem and other synthetic porphyrins: Harnessing the power of porphyrins for oxidation reactions. Open Chem. 2018, 16, 763–789. [Google Scholar] [CrossRef]
- Sadjadi, S.; Heravi, M.M. Current advances in the utility of functionalized SBA mesoporous silica for developing encapsulated nanocatalysts: State of the art. RSC Adv. 2017, 7, 30815–30838. [Google Scholar] [CrossRef] [Green Version]
- Holland, B.T.; Walkup, C.; Stein, A. Encapsulation, Stabilization and Catalytic Properties of Flexible Metal Porphyrin Complexes in MCM-41 with Minimal Electronic Perturbation by the Environment. J. Phys. Chem. B 1998, 102, 4301–4309. [Google Scholar] [CrossRef]
- Calvete, M.J.F.; Silva, M.; Pereira, M.M.; Burrows, H.D. Inorganic helping organic: Recent advances in catalytic heterogeneous oxidations by immobilised tetrapyrrolic macrocycles in micro and mesoporous supports. RSC Adv. 2013, 3, 22774–22789. [Google Scholar] [CrossRef]
- Sun, Y.; Du, Q.; Wang, F.; Dramou, P.; He, H. Active metal single-sites based on metal-organic frameworks: Construction and chemical prospects. New J. Chem. 2021, 45, 1137–1162. [Google Scholar] [CrossRef]
- Zhu, J.; Chen, X.; Thang, A.Q.; Li, F.L.; Chen, D.; Geng, H.; Rui, X.; Yan, Q. Vanadium-based metal-organic frameworks and their derivatives for electrochemical energy conversion and storage. SmartMat 2022, 3, 384–416. [Google Scholar] [CrossRef]
- Rajasree, S.S.; Li, X.; Deria, P. Physical properties of porphyrin-based crystalline metal-organic frameworks. Commun. Chem. 2021, 4, 47. [Google Scholar] [CrossRef]
- Moghadam, M.; Mohammadpoor-Baltork, I.; Tangestaninejad, S.; Mirkhani, V.; Khosropour, A.R.; Taghavi, S.A. Electron-deficient vanadium(IV) tetraphenylporphyrin: A new, highly efficient and reusable catalyst for chemoselective trimethylsilylation of alcohols and phenols with hexamethyldisilazane. Appl. Organomet. Chem. 2011, 25, 687–694. [Google Scholar] [CrossRef]
- Tazeev, D.; Musin, L.; Mironov, N.; Milordov, D.; Tazeeva, E.; Yakubova, S.; Yakubov, M. Complexes of Transition Metals with Petroleum Porphyrin Ligands: Preparation and Evaluation of Catalytic Ability. Catalysts 2021, 11, 1506. [Google Scholar] [CrossRef]
- Dar, T.A.; Tomar, R.; Mian, R.M.; Sankar, M.; Maury, M.R. Vanadyl β-tetrabromoporphyrin: Synthesis, crystal structure and its use as an efficient and selective catalyst for olefin epoxidation in aqueous medium. RSC Adv. 2019, 9, 10405–10413. [Google Scholar] [CrossRef] [Green Version]
- Dar, T.A.; Uprety, B.; Sankar, M.; Maurya, M.R. Robust and electron deficient oxidovanadium (IV) porphyrin catalysts for selective epoxidation and oxidative bromination reactions in aqueous media. Green Chem. 2019, 21, 1757–1768. [Google Scholar] [CrossRef]
- Kumar, R.; Chaudhary, N.; Sankar, M.; Maurya, M.R. Electron deficient nonplanar β-octachlorovanadylporphyrin as a highly efficient and selective epoxidation catalyst for olefins. Dalton Trans. 2015, 44, 17720–17729. [Google Scholar] [CrossRef]
- Farahmand, S.; Ghiaci, M. Highly selective allylic oxidation of cyclohexene to 2-cyclohexen-1-one under mild conditions over vanadyl-porphyrin implanted onto the aminofunctionalized SBA-15. Microporous Mesoporous Mater. 2019, 288, 109560. [Google Scholar] [CrossRef]
- Rahiman, A.K.; Bharathi, K.S.; Sreedaran, S.; Rajesh, K.; Narayanan, V. Cationic vanadyl porphyrin-encapsulated mesoporous Al/V-MCM-41 as heterogeneous catalysts for the oxidation of alkenes. Inorg. Chim. Acta 2009, 362, 1810–1818. [Google Scholar] [CrossRef]
- Farahmand, S.; Ghiaci, M.; Asghari, S. Oxo-vanadium(IV) phthalocyanine implanted onto the modified SBA-15 as a catalyst for direct hydroxylation of benzene to phenol in acetonitrile-water medium: A kinetic study. Chem. Eng. Sci. 2021, 232, 116331. [Google Scholar] [CrossRef]
- Caga, I.T.; Carnell, I.D.; Winterbottom, J.M. Some catalytic properties of silica-supported base and metal porphyrins for hydrocarbon cracking and hydrogenation. J. Chem. Technol. Biotechnol. 2001, 76, 179–185. [Google Scholar] [CrossRef]
- Yan, C.; Yang, X.; Lu, S.; Han, E.; Chen, G.; Zhang, Z.; Zhang, H.; He, Y. Hydrothermal synthesis of vanadium doped nickel sulfide nanoflower for high-performance supercapacitor. J. Alloy. Compd. 2020, 928, 167189. [Google Scholar] [CrossRef]
- Miyaji, A.; Amao, Y. Visible-light driven reduction of CO2 to formate by a water-soluble zinc porphyrin and formate dehydrogenase system with electron-mediated amino and carbamoyl group-modified viologen. New J. Chem. 2021, 45, 5780–5790. [Google Scholar] [CrossRef]
- Wang, A.; Shen, X.; Ren, J.; Wang, Q.; Zhao, W.; Zhu, W.; Shang, D. Regulating the type of cobalt porphyrins for synergistic promotion of photoelectrochemical water splitting of BiVO4. Dyes Pigm. 2021, 192, 109468. [Google Scholar] [CrossRef]
- Liu, B.; Li, J.; Wu, H.-L.; Liu, W.-Q.; Jiang, X.; Li, Z.-J.; Chen, B.; Tung, C.-H.; Wu, L.-Z. Improved Photoelectrocatalytic Performance for Water Oxidation by Earth-Abundant Cobalt Molecular Porphyrin Complex-Integrated BiVO4 Photoanode. ACS Appl. Mater. Interfaces 2016, 28, 18577–18583. [Google Scholar] [CrossRef]
- Dedic, D.; Dorniak, A.; Rinner, U.; Schöfberger, W. Recent Progress in (Photo-)-Electrochemical Conversion of CO2 with Metal Porphyrinoid-Systems. Front. Chem. 2021, 9, 685619. [Google Scholar] [CrossRef]
- Yang, D.; Yu, H.; He, T.; Zuo, S.; Liu, X.; Yang, H.; Ni, B.; Li, H.; Gu, L.; Wang, D.; et al. Visible-light-switched electron transfer over single porphyrin-metal atom center for highly selective electroreduction of carbon dioxide. Nat. Commun. 2019, 10, 3844. [Google Scholar] [CrossRef] [Green Version]
- Garcia Bessegato, G.; Tasso Guaraldo, T.; Boldrin Zanoni, M.V. Enhancement of Photoelectrocatalysis Efficiency by Using Nanostructured Electrodes. In Modern Electrochemical Methods in Nano, Surface and Corrosion Science, 1st ed.; Aliofkhazraei, M., Ed.; IntechOpen: London, UK, 2014; pp. 271–319. [Google Scholar]
- Daghrir, R.; Drogui, P.; Robert, D. Photoelectrocatalytic technologies for environmental applications. J. Photoch. Photobio. A 2012, 238, 41–52. [Google Scholar] [CrossRef]
- Garcia-Segura, S.; Brillas, E. Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters. J. Photoch. Photobio. C 2017, 31, 1–35. [Google Scholar] [CrossRef]
- Eftekhari, A.; Babu, V.J.; Ramakrishna, S. Photoelectrode nanomaterials for photoelectrochemical water splitting. Int. J. Hydrogen Energy 2017, 42, 11078–11109. [Google Scholar] [CrossRef]
- Kalamaras, E.; Maroto-Valer, M.M.; Shao, M.; Xuan, J.; Wang, H. Solar carbon fuel via photoelectrochemistry. Catal. Today 2018, 317, 56–75. [Google Scholar] [CrossRef]
- He, J.; Janáky, C. Recent Advances in Solar-Driven Carbon Dioxide Conversion: Expectations versus Reality. ACS Energy Lett. 2020, 5, 1996–2014. [Google Scholar] [CrossRef] [PubMed]
- Santos, S.M.L.; Cecilia, J.A.; Vilarrasa-García, E.; Silva Junior, I.J.; Rodríguez-Castellón, E.; Azevedo, D.C.S. The effect of structure modifying agents in the SBA-15 for its application in the biomolecules adsorption. Microporous Mesoporous Mater. 2016, 232, 53–64. [Google Scholar] [CrossRef]
- Zhao, D.; Feng, J.; Huo, Q.; Melosh, N.; Fredrickson, G.H.; Chmelka, B.F.; Stucky, G.D. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998, 279, 548–552. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Makhlouf, M.M.; Farooq, M.U.; Ataalla, N.N.; Afifi, M.B. Spectroscopic characterization of thermally evaporated oxovanadium (IV) tetraphenylporphyrin thin films. Phys. Scr. 2021, 96, 075807. [Google Scholar] [CrossRef]
- Dongol, M.; El-Denglawey, A.; Elhady, A.F.; Abuelwaf, A.A. Structural properties of nano 5, 10, 15, 20-Tetraphenyl-21H,23H-porphine nickel (II) thin films. Curr. Appl. Phys. 2012, 12, 1334–1339. [Google Scholar] [CrossRef]
- Rayati, S.; Nafarieha, P.; Amini, M.M. The synthesis, characterization and catalytic application of manganese porphyrins bonded to novel modified SBA-15. New J. Chem. 2018, 42, 6464–6471. [Google Scholar] [CrossRef]
- Thomas, D.W.; Martell, A.E. Metal Chelates of Tetraphenylporphine and of Some p-Substituted Derivatives1,2. J. Am. Chem. Soc. 1959, 81, 5111–5119. [Google Scholar] [CrossRef]
- Kumolo, S.T.; Yulizar, Y.; Haerudin, H.; Kurniawaty, I.; Apriandanu, D.O.B. Identification of metal porphyrins in Duri crude oil. IOP Conf. Ser.-Mat. Sci. 2019, 496, 012038. [Google Scholar] [CrossRef]
- Xi, W.; Zhang, W.; An, B.-K.; Burn, P.L.; Davis, J.J. Tunneling conductance of vectorial porphyrin monolayers. J. Mat. Chem. 2008, 18, 3109–3120. [Google Scholar] [CrossRef]
- Dechaine, G.P.; Gray, M.R. Chemistry and Association of Vanadium Compounds in Heavy Oil and Bitumen and Implications for Their Selective Removal. Energy Fuels 2010, 24, 2795–2808. [Google Scholar] [CrossRef]
- Lee, M.W.; Lee, D.L.; Yen, W.N.; Yeh, C.Y. Synthesis, Optical and Photovoltaic Properties of Porphyrin Dyes. J. Macromol. Sci. Part A Appl. Chem. 2009, 46, 730–737. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.; Liu, Y.; Xu, C.; Yan, Y.; Zhang, Y.; Zhang, Q.; Zhao, S.; Chung, K.; Gray, M.R.; Shi, Q. Separation and Characterization of Vanadyl Porphyrins in Venezuela Orinoco Heavy Crude Oil. Energy Fuels 2013, 27, 2874–2882. [Google Scholar] [CrossRef]
- Mannikko, D.; Stoll, S. Vanadyl Porphyrin Speciation Based on Submegahertz Ligand Proton Hyperfine Couplings. Energy Fuels 2019, 33, 4237–4243. [Google Scholar] [CrossRef]
- Ramachandran, V.; van Tol, J.; McKenna, A.M.; Rodgers, R.P.; Marshall, A.G.; Dalal, N.S. High Field Electron Paramagnetic Resonance Characterization of Electronic and Structural Environments for Paramagnetic Metal Ions and Organic Free Radicals in Deepwater Horizon Oil Spill Tar Balls. Anal. Chem. 2015, 87, 2306–2313. [Google Scholar] [CrossRef]
- Meadows, P.J.; Dujardin, E.; Hall, S.R.; Mann, S. Template-directed synthesis of silica-coated J-aggregate nanotapes. Chem. Commun. 2005, 29, 3688–3690. [Google Scholar] [CrossRef]
Sample 1 | Support | VTPP Content (wt%) | SBET (m2 g−1) | Amount of V by EPR 3 |
---|---|---|---|---|
SiO2 | SiO2 | 0 | 200 | 0 |
SBA | SBA-15 | 0 | 740 | 0 |
Nb-SBA | Nb-SBA-15 | 0 | 705 | 0 |
VTPP | - | 100 | nd | 15.5 |
20VP@SBA | SBA-15 | 20 | 412 | 2.34 |
5VP/@SBA | SBA-15 | 5 | 520 | 0.61 |
20VP@SBA(Nb) 2 | SBA-15(Nb) | 20 | 350 | 1.72 |
20VP/SiO2 | SiO2 | 20 | 162 | 2.51 |
5VP/SiO2 | SiO2 | 5 | 190 | n.d. |
Potential (VAg/AgCl) | Catalyst | idark (μA·cm−2) | iph (μA·cm−2) | Δi (μA·cm−2) |
---|---|---|---|---|
0.40 | VTPP | 3.50 | 3.50 | 0.00 |
20VP/SiO2 | 0.30 | 0.78 | 0.48 | |
20VP@SBA | 0.10 | 0.39 | 0.29 | |
5VP@SBA | 0.05 | 0.45 | 0.40 | |
20VP@SBA(Nb) | 0.25 | 0.70 | 0.45 | |
0.55 | VTPP | 3.25 | 3.45 | 0.2 |
20VP/SiO2 | 0.54 | 1.12 | 0.58 | |
20VP@SBA | 0.10 | 0.50 | 0.40 | |
5VP@SBA | 0.38 | 0.68 | 0.30 | |
20VP@SBA(Nb) | 0.38 | 0.98 | 0.60 | |
0.70 | VTPP | 4.60 | 4.90 | 0.30 |
20VP/SiO2 | 1.25 | 2.15 | 0.90 | |
20VP@SBA | 0.25 | 0.85 | 0.60 | |
5VP@SBA | 0.40 | 1.00 | 0.60 | |
20VP@SBA(Nb) | 1.15 | 2.10 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Myltykbayeva, Z.K.; Seysembekova, A.; Moreno, B.M.; Sánchez-Tovar, R.; Fernández-Domene, R.M.; Vidal-Moya, A.; Solsona, B.; López Nieto, J.M. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials 2022, 15, 7473. https://doi.org/10.3390/ma15217473
Myltykbayeva ZK, Seysembekova A, Moreno BM, Sánchez-Tovar R, Fernández-Domene RM, Vidal-Moya A, Solsona B, López Nieto JM. V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials. 2022; 15(21):7473. https://doi.org/10.3390/ma15217473
Chicago/Turabian StyleMyltykbayeva, Zhannur K., Anar Seysembekova, Beatriz M. Moreno, Rita Sánchez-Tovar, Ramón M. Fernández-Domene, Alejandro Vidal-Moya, Benjamín Solsona, and José M. López Nieto. 2022. "V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties" Materials 15, no. 21: 7473. https://doi.org/10.3390/ma15217473
APA StyleMyltykbayeva, Z. K., Seysembekova, A., Moreno, B. M., Sánchez-Tovar, R., Fernández-Domene, R. M., Vidal-Moya, A., Solsona, B., & López Nieto, J. M. (2022). V-Porphyrins Encapsulated or Supported on Siliceous Materials: Synthesis, Characterization, and Photoelectrochemical Properties. Materials, 15(21), 7473. https://doi.org/10.3390/ma15217473