The Microstructure Formation of a Protective Oxide-Scale Layer on Small-Diameter FeCrAl Fibers
Abstract
:1. Introduction
2. Experimental Methods
2.1. Sintered Metal Fibers: Material and Sample Preparation
2.2. Characterization Techniques
3. Results and Discussion
3.1. Thermogravimetric Analysis
3.2. SEM Micromorphology and EDS Spectroscopy
3.2.1. Baseline—Before Heat Treatment—As Received
3.2.2. After One MSHT Cycle
3.2.3. After Multiple MSHT Cycles
3.3. X-ray Diffraction (XRD) Analyses
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Küster, K.; Barburski, M.; Lomov, S.V.; Vanclooster, K. Inorganic and Composite Fibers: Production, Properties, and Applications; Woodhead Publishing: Sawston, UK, 2018; pp. 219–241. [Google Scholar] [CrossRef]
- Akhil, M.; Arsha, A.; Manoj, V.; Rajan, T.; Pai, B.; Huber, P.; Gries, T. Fiber Reinforced Composites, Constituents, Compatibility, Perspectives, and Applications; Woodhead Publishing: Sawston, UK, 2021; pp. 479–513. [Google Scholar] [CrossRef]
- Zhou, R.S.; Snyder, R. Structures and transformation mechanisms of the η, γ and θ transition aluminas. Acta Crystallogr. Sect. B 1991, 47, 617–630. [Google Scholar] [CrossRef]
- Pint, B.A.; Martin, J.; Hobbs, L.W. The oxidation mechanism of θ-Al2O3 scales. Solid State Ion. 1995, 78, 99–107. [Google Scholar] [CrossRef]
- Andrieu, E.; Germidis, A.; Molins, R. High-temperature oxidation of thin FeCrAl strips. Mater. Sci. Forum 1997, 251–254, 357–364. [Google Scholar]
- Badini, C.; Laurella, F. Oxidation of FeCrAl alloy: Influence of temperature and atmosphere on scale growth rate and mechanism. Surf. Coat. Technol. 2001, 135, 291–298. [Google Scholar] [CrossRef]
- Zhao, S.; Zhang, J.; Weng, D.; Wu, X. A method to form well-adhered γ-Al2O3 layers on FeCrAl metallic supports. Surf. Coat. Technol. 2003, 167, 97–105. [Google Scholar] [CrossRef]
- Quadakkers, W.J.; Naumenko, D.; Wessel, E.; Kochubey, V.; Singheiser, L. Growth rates of alumina scales on Fe–Cr–Al alloys. Oxid. Met. 2004, 61, 17–37. [Google Scholar] [CrossRef]
- Josefsson, H.; Liu, F.; Svensson, J.E.; Halvarsson, M.; Johansson, L.G. Oxidation of FeCrAl alloys at 500–900 °C in dry O2. Mater. Corros. 2005, 56, 801–805. [Google Scholar] [CrossRef]
- N’Dah, E.; Galerie, A.; Wouters, Y.; Goossens, D.; Naumenko, D.; Kochubey, V.; Quadakkers, W. Metastable alumina formation during oxidation of FeCrAl and its suppression by surface treatments. Mater. Corros. 2005, 56, 843–847. [Google Scholar] [CrossRef]
- Prior, D.J.; Al-Badairy, H.; Seward, G.G.E.; Veltkamp, C.J.; Tatlock, G.J. Microstructural development of α alumina scales developed on FeCrAl alloys. Mater. Sci. Technol. 2006, 22, 1316–1324. [Google Scholar] [CrossRef]
- Chevalier, S.; Galerie, A.; Heintz, O.; Chassagnon, R.; Crisci, A. Thermal Alumina Scales on FeCrAl: Characterization and Growth Mechanism. Mater. Sci. Forum 2008, 595–598, 915–922. [Google Scholar]
- Engkvist, J.; Bexell, U.; Grehk, M.; Olsson, M. High-Temperature Oxidation of FeCrAl-Alloys—Influence of Al-Concentration on Oxide Layer Characteristics. Mater. Corros. 2009, 60, 876–881. [Google Scholar] [CrossRef]
- Rallan, C.; Akah, A.; Hill, P.; Garforth, A. Growth of Hierarchically Structured High-Surface Area Alumina on FeCrAl Alloy Wires. Indian J. Mater. Sci. 2013, 2013, 251495. [Google Scholar] [CrossRef]
- Rallan, C.; Garforth, A. Growth of Hierarchically Structured High-Surface Area Alumina on FeCralloy® Rods. Chin. J. Chem. Eng. 2014, 22, 861–868. [Google Scholar] [CrossRef]
- Vaneman, G.L.; Sigler, D.R. Accelerated Whisker Growth on Iron-Chromium-Aluminum Alloy Foil. U.S. Patent 4915751, 10 April 1990. [Google Scholar]
- Samad, J.E.; Nychka, J.A.; Semagina, N.V. Structured catalysts via multiple stage thermal oxidation synthesis of FeCrAl alloy sintered microfibers. Chem. Eng. J. 2011, 168, 470–476. [Google Scholar] [CrossRef]
- Kadiri, H.E.; Molins, R.; Bienvenu, Y.; Horstemeyer, M.F. Abnormal High Growth Rates of Metastable Aluminas on FeCrAl Alloys. Oxid. Met. 2005, 64, 63–97. [Google Scholar] [CrossRef]
- Potter, D.J.; Al-Badairy, H.; Tatlock, G.J.; Bennett, M.J. Void formation and filling under alumina scales formed on Fe–20Cr–5Al based alloys and coatings, oxidised at temperatures up to 1200 °C. Mater. Corros. 2008, 59, 414–422. [Google Scholar] [CrossRef]
- Stott, F.H.; Hiramatsu, N. Breakdown of protective scales during the oxidation of thin foils of Fe–20Cr–5Al alloys at high temperatures. Mater. High Temp. 2000, 17, 93–99. [Google Scholar] [CrossRef]
- Ben Naji, L.; Ibrahim, O.M.; Al-Fadhalah, K.J. Formation of protective aluminum-oxide layer on the surface of FeCrAl sintered-metal-fibers via multistage thermal oxidation. World Acad. Sci. Eng. Technol. Int. J. Chem. Mater. Eng. 2018, 12, 596–599. [Google Scholar]
- Whittle, D.P.; Stringer, J. Improvements in high temperature oxidation resistance by additions of reactive elements or oxide dispersions. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 1980, 295, 309–329. [Google Scholar]
- Prescott, R.; Graham, M.J. The formation of aluminum oxide scales on high-temperature alloys. Oxid. Met. 1992, 38, 233–254. [Google Scholar] [CrossRef]
- Falaakh, D.F.; Kim, S.; Bum, C.B. Microstructure of aluminum oxide formed on ferritic FeCrAl alloy after high-temperature steam oxidation. Mater. High Temp. 2020, 37, 207–219. [Google Scholar] [CrossRef]
- Strawbridge, A.; Hou, P.Y. The role of reactive elements in oxide scale adhesion. Mater. High Temp. 1994, 12, 177–181. [Google Scholar] [CrossRef]
- Herbelin, J.M.; Mantel, M. Effects of Al Addition and Minor Elements on Oxidation Behavior of FeCrAl Alloys. J. Phys. IV Colloq. 1995, 5, C7-365–C7-374. [Google Scholar]
- Ishii, K.; Kohno, M.; Ishikawa, S.; Satoh, S. Effect of rare-earth elements on high-oxidation resistance of Fe-20Cr-5Al alloy foils. Mater. Trans. JIM 1997, 38, 787–792. [Google Scholar] [CrossRef] [Green Version]
- Mayer, J.; Penkalla, H.J.; Dimyati, A.; Dani, M.; Untoro, P.; Naumenko, D.; Quadakkers, W.J. Time dependence of Mg incorporation in alumina scales on FeCrAl alloys studied by FIB-prepared TEM cross-sections. Mater. High Temp. 2003, 20, 413–419. [Google Scholar] [CrossRef]
- Naumenko, D.; Quadakkers, W.J.; Galerie, A.; Wouters, Y.; Jourdain, S. Parameters affecting transient oxide formation on FeCrAl based foil and fibre materials. Mater. High Temp. 2003, 20, 287–293. [Google Scholar] [CrossRef]
- Naumenko, D.; Kochubey, V.; Le-Coze, J.; Wessel, E.; Singheiser, L.; Quadakkers, W. Effect of Combined Yttrium and Zirconium Additions on Protective Alumina Scale Formation on High Purity FeCrAl Alloys during Oxidation in the Temperature Range of 1200 to 1300 °C. Mater. Sci. Forum 2004, 461–464, 489–496. [Google Scholar]
- Li, H.; Wang, Y.; Chen, X.; Liu, S.; Zhou, Y.; Zhu, Q.; Chen, Y.; Lu, H. Preparation of metallic monolithic Pt/FeCrAl fiber catalyst by suspension spraying for VOCs combustion. RSC Adv. 2018, 8, 14806–14811. [Google Scholar] [CrossRef] [Green Version]
- Fornasiero, P.; Montini, T.; Graziani, M.; Zilio, S.; Succi, M. Development of functionalized Fe–Al–Cr alloy fibers as innovative catalytic oxidation devices. Catal. Today 2008, 137, 475–482. [Google Scholar] [CrossRef]
- Fei, W.; Kuiry, S.; Seal, S. Inhibition of metastable alumina formation on Fe–Cr–Al–Y alloy fibers at high temperature using titania coating. Oxid. Met. 2004, 62, 29–44. [Google Scholar] [CrossRef]
- Tarasov, A.; Root, N.; Lebedeva, O.; Kultin, D.; Kiwi-Minsker, L.; Kustov, L. Platinum Nanoparticles on Sintered Metal Fibers Are Efficient Structured Catalysts in Partial Methane Oxidation into Synthesis Gas. ACS Omega 2020, 6, 5078–5084. [Google Scholar] [CrossRef]
- Pauletto, G.; Vaccari, A.; Groppi, G.; Bricaud, L.; Benito, P.; Boffito, D.C.; Lercher, J.A.; Patience, G.S. FeCrAl as a Catalyst Support. Chem. Rev. 2020, 120, 7516–7550. [Google Scholar] [CrossRef]
- Ibrahim, O.M.; Alazemi, A.A.; Naji, L.B. Multistage heat treatment and the development of a protective oxide-scale layer on the surface of FeCrAl sintered-metal-fibers. Sci. Rep. 2021, 11, 797. [Google Scholar] [CrossRef]
- Fei, W.; Kuiry, S.C.; Sohn, Y.; Seal, S. Sol-gel alumina coating on Fe-Cr-Al-Y fibre media for catalytic converters. Surf. Eng. 2003, 19, 189–194. [Google Scholar] [CrossRef]
Element | Chemical Composition (%) |
---|---|
Cr | 20.580 |
Al | 5.760 |
Mn | 0.160 |
Cu | 0.046 |
Ti | 0.041 |
C | 0.033 |
P | 0.015 |
S | 0.002 |
N | 0.010 |
Si | 0.240 |
Fe | Balance |
Heat Treatment Stage | Temperature (°C) | Time (h) | Heating Rate (°C/min) |
---|---|---|---|
1 | 930 | 1 | 50 |
2 | 960 | 1 | 50 |
3 | 990 | 2 | 50 |
Fiber Size (µm) | Weight Gained (%) | ||
---|---|---|---|
First Stage (930 °C for 1 h) | Second Stage (960 °C for 1 h) | Third Stage (990 °C for 2 h) | |
12 | 1.0 | 0.6 | 0.8 |
17 | 0.7 | 0.3 | 0.5 |
Diameter (μm) | Surface Area per Weight (cm2/g) |
---|---|
12 | 466 |
17 | 329 |
40 | 140 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alazemi, A.A.; Ibrahim, O.M. The Microstructure Formation of a Protective Oxide-Scale Layer on Small-Diameter FeCrAl Fibers. Materials 2022, 15, 7444. https://doi.org/10.3390/ma15217444
Alazemi AA, Ibrahim OM. The Microstructure Formation of a Protective Oxide-Scale Layer on Small-Diameter FeCrAl Fibers. Materials. 2022; 15(21):7444. https://doi.org/10.3390/ma15217444
Chicago/Turabian StyleAlazemi, Abdullah A., and Osama M. Ibrahim. 2022. "The Microstructure Formation of a Protective Oxide-Scale Layer on Small-Diameter FeCrAl Fibers" Materials 15, no. 21: 7444. https://doi.org/10.3390/ma15217444
APA StyleAlazemi, A. A., & Ibrahim, O. M. (2022). The Microstructure Formation of a Protective Oxide-Scale Layer on Small-Diameter FeCrAl Fibers. Materials, 15(21), 7444. https://doi.org/10.3390/ma15217444