Solubility and Thermodynamic Properties of Febuxostat in Various (PEG 400 + Water) Mixtures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Determination of FXT (3) Solubility in {PEG 400 (1) + H2O (2)} Mixtures
2.3. Hansen Solubility Parameters (HSPs) of FXT and Various {PEG 400 (1) + H2O (2)} Mixtures
2.4. FXT Ideal Solubility and Solute–Solvent Interactions
2.5. FXT Solubility Correlation Using Computational Models
2.6. Thermodynamic Parameters
2.7. Enthalpy–Entropy Compensation Analysis
3. Results and Discussion
3.1. Measured Solubility Data of FXT
3.2. Determination of HSPs
3.3. Determination of Ideal Solubility and Solute–Solvent Interactions
3.4. FXT Solubility Correlation Using Computational Models
3.5. Apparent Thermodynamic Parameters for FXT Dissolution
3.6. Enthalpy–Entropy Compensation Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Huang, Z.; Wan, X.; Li, J.; Liu, J. Measurement and correlation of the solubility of febuxostat in four organic solvents at various temperatures. J. Chem. Eng. Data 2012, 57, 3149–3152. [Google Scholar] [CrossRef]
- Patel, J.; Jagia, M.; Bansal, A.K.; Patel, S. Characterization and thermodynamic relationship of three polymorphs of a xanthine oxidase inhibitor, febuxostat. J. Pharm. Sci. 2015, 104, 3722–3730. [Google Scholar] [CrossRef]
- Becker, M.A.; Schumacher, H.R., Jr.; Wortmann, R.L.; Macdonald, P.A.; Eustace, D.; Palo, W.A.; Streit, J.; Joseph-Ridge, N. Febuxostat compared with allopurinol in patients with hyperuricemia and gout. N. Engl. J. Med. 2005, 353, 2450–2461. [Google Scholar] [CrossRef] [Green Version]
- Schumacher, H.R., Jr.; Becker, M.A.; Wortmann, R.L.; Macdonald, P.A.; Hunt, B.; Streit, J.; Lademacher, C.; Joseph-Ridge, N. Effects of febuxostat versus allopurinol and placebo in reducing serum urate in subjects with hyperuricemia and gout: A 28-week, phase III, randomized, double-blind, parallel-group trial. Arthritis Rheum. 2008, 59, 1540–1548. [Google Scholar] [CrossRef]
- Kitamura, M. Controlling factors and mechanism of polymorphic crystallization. Cryst. Growth Des. 2004, 4, 1153–1159. [Google Scholar] [CrossRef]
- Kitamura, M.; Hironaka, S. Effect of temperature on antisolvent crystallization and transformation behaviors of thiazole-derivative polymorphs. Cryst. Growth Des. 2006, 6, 1214–1218. [Google Scholar] [CrossRef]
- Kitamura, M.; Sugimoto, M. Anti-solvent crystallization and transformation of thiazole-derivative polymorphs-I: Effect of addition rate and initial concentrations. J. Cryst. Growth 2003, 257, 177–184. [Google Scholar] [CrossRef]
- Kitamura, M. Strategy for control of crystallization of polymorphs. CrystEngComm 2009, 11, 949–964. [Google Scholar] [CrossRef]
- Zhang, X.-R.; Zhang, L. Simultaneous enhancement of solubility and dissolution of rate of poorly water-soluble febuxostat via salts. J. Mol. Str. 2017, 1137, 328–334. [Google Scholar] [CrossRef]
- Pawar, P.G.; Darekar, A.B.; Saudagar, R.B. Formulation development and evaluation febuxostat loaded microsponges. Int. J. Res. Adv. Technol. 2019, 7, 523–533. [Google Scholar] [CrossRef]
- Amin, O.M.; Ammar, A.; Eladawy, S.A. Febuxostat loaded β-cyclodextrin based nanosponge tablet: An in vitro and in vivo evaluation. J. Pharm. Investig. 2020, 50, 399–411. [Google Scholar] [CrossRef]
- Alfaifi, M.Y.; Shati, A.A.; Elbehairi, S.E.I.; Fahmy, U.A.; Alhakamy, N.A.; Md, S. Anti-tumor effect of PEG-coated PLGA nanoparticles of febuxostat on A549 non-small cell lung cancer cells. 3 Biotech 2020, 10, E133. [Google Scholar] [CrossRef] [PubMed]
- Tang, J.; Bao, J.; Shi, X.; Sheng, X.; Su, W. Preparation, optimization, and in vitro-in-vivo evaluation of febuxostat ternary solid dispersion. J. Microencap. 2018, 35, 454–466. [Google Scholar] [CrossRef]
- Kanke, P.K.; Pathan, I.B.; Jadhav, A.; Rageeb, M.; Usman, M. Formulation and evaluation of febuxostat nanoemulsion for transdermal drug delivery. J. Pharm. Biosci. 2021, 9, 49–71. [Google Scholar]
- Alhakamy, N.A.; Fahmy, U.A.; Ahmed, O.A.A.; Almohammadi, E.A.; Alotaibi, S.A.; Aljohani, R.A.; Alharbi, W.S.; Alfaleh, M.A.; Alfaifi, M.Y. Development of an optimized febuxostat self-nanoemulsified loaded transdermal film: In-vitro, ex-vivo and in-vivo evaluation. Pharm. Dev. Technol. 2020, 25, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Al-Amodi, Y.A.; Hosny, K.M.; Safo, M.K.; El-Say, K.M. Investigating the potential of transdermal delivery of febuxostat ffrom oral lyophilized tablets loaded with a self-nanoemulsifying drug delivery system. Pharmaceutics 2020, 12, 534. [Google Scholar] [CrossRef]
- Sundari, P.T.; Mounika, P. Formulation and evaluation of SMEDDS coating febuxostat by employing coconut oil and Labrasol as oil and surfactant system. World J. Pharm. Sci. 2018, 7, 530–542. [Google Scholar]
- El-Shenawy, A.A.; Abdelhafez, W.A.; Ismail, A.; Kassem, A.A. Formulation and characterization of nanosized ethosomal formulations of antigout model drug (febuxostat) prepared by cold method: In vitro/ex vivo and in vivo assessment. AAPS PharmSciTech 2020, 21, E31. [Google Scholar] [CrossRef]
- Sharma, N.; Kumar, S.; Joshi, G.; Choudhary, D. Formulation and characterization of febuxostat loaded nanostructured lipid carriers (NLCs)-gel for topical treatment of gout. Rec. Pat. Nanotechnol. 2022, 16, 250–258. [Google Scholar] [CrossRef]
- Di, L.; Fish, P.V.; Mano, T. Bridging solubility between drug discovery and development. Drug Discov. Today 2012, 17, 486–495. [Google Scholar] [CrossRef]
- Rezaei, H.; Rahimpour, E.; Zhao, H.; Martinez, F.; Barzegar-Jalali, M.; Jouyban, A. Solubility of baclofen in some neat and mixed solvents at different temperatures. J. Mol. Liq. 2022, 347, E118352. [Google Scholar] [CrossRef]
- Barrett, J.A.; Yang, W.; Skolnik, S.M.; Belliveau, L.M.; Patros, K.M. Discovery solubility measurement and assessment of small molecules with drug development in mind. Drug Discov. Today 2022, 27, 1315–1325. [Google Scholar] [CrossRef] [PubMed]
- Soliman, M.E.; Adewumi, A.T.; Akawa, O.B.; Subair, T.I.; Okunlola, F.O.; Akinsuku, A.E.; Khan, S. Simulation models for prediction of bioavailability of medicinal drugs-the interface between experiment and computation. AAPS PharmSciTech 2022, 23, E86. [Google Scholar] [CrossRef] [PubMed]
- Yadav, K.; Sachan, A.K.; Kumar, S.; Dubey, A. Techniques for increasing solubility: A review of conventional and new strategies. Asian J. Pharm. Res. Dev. 2022, 10, 144–153. [Google Scholar]
- Jouyban, A. Review of the cosolvency models for predicting drug solubility in solvent mixtures: An update. J. Pharm. Pharm. Sci. 2019, 22, 466–485. [Google Scholar] [CrossRef] [Green Version]
- Bolla, G.; Nangia, A. Pharmaceutical cocrystals: Walking the talk. Chem. Commun. 2016, 52, 8342–8360. [Google Scholar] [CrossRef]
- Bolla, G.; Sarma, B.; Nangia, A.K. Crystal engineering of pharmaceutical cocrystals in the discovery and development of improved drugs. Chem. Rev. 2022, 122, 11514–11603. [Google Scholar] [CrossRef]
- Duggirala, N.K.; Perry, M.L.; Almarsson, O.; Zaworotko, M.J. Pharmaceutical cocrystals: Along with the path to improve medicines. Chem. Commun. 2016, 52, 640–655. [Google Scholar] [CrossRef]
- Paus, R.; Hart, E.; Ji, Y.; Sadowski, G. Solubility and caloric properties of cinnarizine. J. Chem. Eng. Data 2015, 60, 2256–2261. [Google Scholar] [CrossRef]
- Ruether, F.; Sadowski, G. Modeling the solubility of pharmaceuticals in pure solvents and solvent mixtures for drug process design. J. Pharm. Sci. 2009, 98, 4205–4215. [Google Scholar] [CrossRef]
- Alyamani, M.; Alshehri, S.; Alam, P.; Wani, S.U.D.; Ghoneim, M.M.; Shakeel, F. Solubility and solution thermodynamics of raloxifene hydrochloride in various (DMSO + water) compositions. Alexand. Eng. J. 2022, 61, 9119–9128. [Google Scholar] [CrossRef]
- Haq, N.; Alghaith, A.F.; Alshehri, S.; Shakeel, F. Solubility and thermodynamic data of febuxostat in various mono solvents at different temperatures. Molecules 2022, 27, 4043. [Google Scholar] [CrossRef] [PubMed]
- Abourehab, M.A.S.; Alshehri, S.; Alzhrani, R.M.; Algarni, M.A.; Almalki, A.H.; Alqarni, M.; Alsubaiyel, A.M.; Abduljabbar, M.H.; AboRas, K.M. Experimental evaluation and thermodynamic analysis of febuxostat solubility in supercritical solvent. J. Mol. Liq. 2022, 364, E120040. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamic function of lornoxicam in (PEG-400 + water) mixtures at different temperatures. J. Mol. Liq. 2016, 219, 439–443. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Alanazi, F.K.; Alsarra, I.A. Solubility and thermodynamics of tenoxicam in (PEG-400 + water) binary solvent systems at different temperatures. J. Mol. Liq. 2016, 213, 221–227. [Google Scholar] [CrossRef]
- Shakeel, F.; Bhat, M.A.; Haq, N.; Fathi-Azarbayjani, A.; Jouyban, A. Solubility and thermodynamic parameters of a novel anti-cancer drug (DHP-5) in polyethylene glycol 400 + water mixtures. J. Mol. Liq. 2017, 229, 241–245. [Google Scholar] [CrossRef]
- Shakeel, F.; Haq, N.; Siddiqui, N.A. Thermodynamic solubility and solvation behavior of ferulic acid in different (PEG-400 + water) binary solvent mixtures. Drug Dev. Ind. Pharm. 2019, 45, 1468–1476. [Google Scholar] [CrossRef] [PubMed]
- Alqarni, M.H.; Haq, N.; Alam, P.; Abdel-Kader, M.S.; Foudah, A.I.; Shakeel, F. Solubility data, Hansen solubility parameters and thermodynamic behavior of pterostilbene in some pure solvents and different (PEG-400 + water) cosolvent compositions. J. Mol. Liq. 2021, 331, E115700. [Google Scholar] [CrossRef]
- Behboudi, E.; Soleymani, J.; Martinez, F.; Jouyban, A. Solubility of amlodipine besylate in binary mixtures of polyethylene glycol 400 + water at various temperatures: Measurement and modelling. J. Mol. Liq. 2022, 347, E118394. [Google Scholar] [CrossRef]
- Mohammadian, E.; Foroumadi, A.; Hasanvand, Z.; Rahimpour, E.; Zhao, H.; Jouyban, A. Simulation of mesalazine solubility in the binary solvents at various temperatures. J. Mol. Liq. 2022, 357, E119160. [Google Scholar] [CrossRef]
- Higuchi, T.; Connors, K.A. Phase-solubility techniques. Adv. Anal. Chem. Instr. 1965, 4, 117–122. [Google Scholar]
- Zhu, Q.N.; Wang, Q.; Hu, Y.B.; Abliz, X. Practical determination of the solubility parameters of 1-alkyl-3-methylimidazolium bromide ([CnC1im]Br, n = 5, 6, 7, 8) ionic liquids by inverse gas chromatography and the Hansen solubility parameter. Molecules 2019, 24, 1346. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alanazi, A.; Alshehri, S.; Altamimi, M.; Shakeel, F. Solubility determination and three dimensional Hansen solubility parameters of gefitinib in different organic solvents: Experimental and computational approaches. J. Mol. Liq. 2020, 299, E112211. [Google Scholar] [CrossRef]
- Kalam, M.A.; Alshamsan, A.; Alkholief, M.; Alsarra, I.A.; Ali, R.; Haq, N.; Anwer, M.K.; Shakeel, F. Solubility measurement and various solubility parameters of glipizide in different neat solvents. ACS Omega 2020, 5, 1708–1716. [Google Scholar] [CrossRef] [PubMed]
- Anwer, M.K.; Muqtader, M.; Iqbal, M.; Ali, R.; Almutairy, B.K.; Alshetaili, A.; Alshahrani, S.M.; Aldawsari, M.F.; Alalaiwe, A.; Shakeel, F. Estimating the solubility, solution thermodynamics, and molecular interactions of aliskiren hemifumarate in alkyl imidazolium based ionic liquids. Molecules 2019, 24, 2807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wan, Y.; He, H.; Huang, Z.; Zhang, P.; Sha, J.; Li, T.; Ren, B. Solubility, thermodynamic modeling and Hansen solubility parameter of 5-norbornene-2,3-dicarboximide in three binary solvents (methanol, ethanol, ethyl acetate + DMF) from 278.15 K to 323.15 K. J. Mol. Liq. 2020, 300, E112097. [Google Scholar] [CrossRef]
- Ruidiaz, M.A.; Delgado, D.R.; Martínez, F.; Marcus, Y. Solubility and preferential solvation of indomethacin in 1,4-dioxane + water solvent mixtures. Fluid Phase Equilib. 2010, 299, 259–265. [Google Scholar] [CrossRef]
- Hildebrand, J.H.; Prausnitz, J.M.; Scott, R.L. Regular and Related Solutions; Van Nostrand Reinhold: New York, NY, USA, 1970. [Google Scholar]
- Manrique, Y.J.; Pacheco, D.P.; Martínez, F. Thermodynamics of mixing and solvation of ibuprofen and naproxen in propylene glycol + water cosolvent mixtures. J. Sol. Chem. 2008, 37, 165–181. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, X.; Yu, Y.; Zhao, S.; Song, H.; Chen, A.; Shang, Z. Preparation and characterization of vanillin cross-linked chitosan microspheres of pterostilbene. Int. J. Polym. Anal. Charact. 2014, 19, 83–93. [Google Scholar] [CrossRef]
- Mohammadian, E.; Rahimpour, E.; Martinez, F.; Jouyban, A. Budesonide solubility in polyethylene glycol 400 + water at different temperatures: Experimental measurement and mathematical modelling. J. Mol. Liq. 2019, 274, 418–425. [Google Scholar] [CrossRef]
- Apelblat, A.; Manzurola, E. Solubilities of o-acetylsalicylic, 4-aminosalicylic, 3,5-dinitrosalicylic and p-toluic acid and magnesium-DL-aspartate in water from T = (278 to 348) K. J. Chem. Thermodyn. 1999, 31, 85–91. [Google Scholar] [CrossRef]
- Manzurola, E.; Apelblat, A. Solubilities of L-glutamic acid, 3-nitrobenzoic acid, acetylsalicylic, p-toluic acid, calcium-L-lactate, calcium gluconate, magnesium-DL-aspartate, and magnesium-L-lactate in water. J. Chem. Thermodyn. 2002, 34, 1127–1136. [Google Scholar] [CrossRef]
- Ksiazczak, A.; Moorthi, K.; Nagata, I. Solid-solid transition and solubility of even n-alkanes. Fluid Phase Equilib. 1994, 95, 15–29. [Google Scholar] [CrossRef]
- Tong, Y.; Wang, Z.; Yang, E.; Pan, B.; Jiang, J.; Dang, P.; Wei, H. Determination and correlation of solubility and solution thermodynamics of ethenzamide in different pure solvents. Fluid Phase Equilib. 2016, 427, 549–556. [Google Scholar] [CrossRef]
- Shakeel, F.; Alshehri, S. Solubilization, Hansen solubility parameters, solution thermodynamics and solvation behavior of flufenamic acid in (Carbitol + water) mixtures. Processes 2020, 8, 1224. [Google Scholar] [CrossRef]
- Yalkowsky, S.H.; Roseman, T.J. Solubilization of drugs by cosolvents. In Techniques of Solubilization of Drugs; Yalkowsky, S.H., Ed.; Marcel Dekker Inc.: New York, NY, USA, 1981; pp. 91–134. [Google Scholar]
- Jouyban, A.; Acree Jr., W.E. Mathematical derivation of the Jouyban-Acree model to represent solute solubility data in mixed solvents at various temperatures. J. Mol. Liq. 2018, 256, 541–547. [Google Scholar] [CrossRef]
- Krug, R.R.; Hunter, W.G.; Grieger, R.S. Enthalpy-entropy compensation. 2. Separation of the chemical from the statistic effect. J. Phys. Chem. 1976, 80, 2341–2351. [Google Scholar] [CrossRef]
- Holguín, A.R.; Rodríguez, G.A.; Cristancho, D.M.; Delgado, D.R.; Martínez, F. Solution thermodynamics of indomethacin in propylene glycol + water mixtures. Fluid Phase Equilib. 2012, 314, 134–139. [Google Scholar] [CrossRef]
- Yin, Y.-F.; Guo, Y.; Song, W.-D.; Duan, X.-C.; Zheng, X.-C.; Zhong, T.; Zhang, S.; Yao, X.; Xu, M.-Q.; Zhang, Q.; et al. Improving solubility and oral bioavailability of febuxostat by polymer-coated nanomatrix. AAPS PharmSciTech 2018, 19, 934–940. [Google Scholar] [CrossRef]
- Patel, V.P.; Patel, A.P.; Shah, A. Optimization of amorphous solid dispersion techniques to enhance solubility of febuxostat. Foloia Med. 2021, 63, 557–568. [Google Scholar] [CrossRef]
- Reddy, S.M.; Sundari, P.T. Solubility enhancement studies of febuxostat by employing Gelucire 50/13. J. Emerg. Technol. Innov. Res. 2018, 5, 499–509. [Google Scholar]
Material | Molecular Formula | Molar Mass (g mol−1) | CAS RN | Purification Method | Mass Fraction Purity | Analysis Method | Source |
---|---|---|---|---|---|---|---|
FXT | C16H16N2O3S | 316.40 | 144060-53-7 | None | ˃0.99 | HPLC | E-Merck |
PEG 400 | H(OCH2CH2)nOH | 400.00 | 25322-68-3 | None | ˃0.99 | HPLC | Sigma Aldrich |
Water | H2O | 18.07 | 7732-18-5 | None | - | - | Milli-Q |
ma | xeb | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
0.0 | 1.91 × 10–7 | 3.27 × 10–7 | 5.18 × 10–7 | 7.46 × 10–7 | 1.17 × 10–6 |
0.1 | 5.73 × 10–7 | 9.44 × 10–7 | 1.51 × 10–6 | 2.14 × 10–6 | 3.31 × 10–6 |
0.2 | 1.72 × 10–6 | 2.75 × 10–6 | 4.22 × 10–6 | 5.98 × 10–6 | 9.01 × 10–6 |
0.3 | 5.03 × 10–6 | 7.74 × 10–6 | 1.24 × 10–5 | 1.71 × 10–5 | 2.55 × 10–5 |
0.4 | 1.52 × 10–5 | 2.26 × 10–5 | 3.41 × 10–5 | 4.79 × 10–5 | 6.91 × 10–5 |
0.5 | 4.42 × 10–5 | 6.43 × 10–5 | 9.59 × 10–5 | 1.36 × 10–4 | 1.96 × 10–4 |
0.6 | 1.32 × 10–4 | 1.87 × 10–4 | 2.80 × 10–4 | 3.84 × 10–4 | 5.33 × 10–4 |
0.7 | 3.88 × 10–4 | 5.29 × 10–4 | 7.77 × 10–4 | 1.10 × 10–3 | 1.51 × 10–3 |
0.8 | 1.18 × 10–3 | 1.52 × 10–3 | 2.21 × 10–3 | 3.05 × 10–3 | 4.08 × 10–3 |
0.9 | 3.40 × 10–3 | 4.32 × 10–3 | 6.24 × 10–3 | 8.52 × 10–3 | 1.16 × 10–2 |
1.0 | 9.88 × 10–3 | 1.22 × 10–2 | 1.76 × 10–2 | 2.38 × 10–2 | 3.11 × 10–2 |
xidl | 3.55 × 10–2 | 3.97 × 10–2 | 4.44 × 10–2 | 4.96 × 10–2 | 5.52 × 10–2 |
Solubility Approach | Solubility (µg mL−1) | Reference |
---|---|---|
Nanomatrix | 92.91 | [61] |
Solid dispersion | 632.0 | [62] |
Solid dispersion | 1146 | [63] |
Nanoemulsion | 655.2 | [63] |
PEG 400 | 7053 | Present work |
m | γi | ||||
---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | |
0.0 | 186,185 | 121,493 | 85,826.5 | 665,33.4 | 47,365.2 |
0.1 | 61,995.4 | 42,125 | 29,434.9 | 23,186.9 | 16,728.8 |
0.2 | 20,595.7 | 14,491.3 | 10,530.9 | 8295.58 | 6137.04 |
0.3 | 7064.03 | 5138.69 | 3595.31 | 2906.06 | 2165.08 |
0.4 | 2336.21 | 1762.23 | 1304.59 | 1035.92 | 800.167 |
0.5 | 802.759 | 618.725 | 463.792 | 364.386 | 281.921 |
0.6 | 269.068 | 213.120 | 158.860 | 129.281 | 103.713 |
0.7 | 91.5310 | 75.2345 | 57.2032 | 45.1986 | 36.6356 |
0.8 | 30.0797 | 26.2123 | 20.0819 | 16.2481 | 13.5365 |
0.9 | 10.4457 | 9.21501 | 7.12575 | 5.82733 | 4.76068 |
1.0 | 3.59131 | 3.25024 | 2.52160 | 2.08352 | 1.77697 |
m | a | b | R2 | Overall RMSD (%) |
---|---|---|---|---|
0.0 | 12.880 | –8445.1 | 0.9972 | |
0.1 | 13.190 | –8210.6 | 0.9977 | |
0.2 | 12.766 | –7758.0 | 0.9987 | |
0.3 | 13.549 | –7674.4 | 0.9979 | |
0.4 | 12.980 | –7177.6 | 0.9995 | |
0.5 | 13.700 | –7076.7 | 0.9998 | 2.30 |
0.6 | 13.430 | –6669.2 | 0.9990 | |
0.7 | 14.062 | –6541.4 | 0.9987 | |
0.8 | 13.467 | –6035.9 | 0.9963 | |
0.9 | 14.224 | –5948.0 | 0.9956 | |
1.0 | 14.164 | –5611.6 | 0.9941 |
m | A | B | C | R2 | Overall RMSD (%) |
---|---|---|---|---|---|
0.0 | 715.04 | –40,696 | –104.25 | 0.9980 | |
0.1 | 579.83 | –34,242 | –84.134 | 0.9981 | |
0.2 | 391.07 | –25,144 | –56.167 | 0.9989 | |
0.3 | 372.45 | –24,169 | –53.285 | 0.9980 | |
0.4 | 159.24 | –13,912 | –21.708 | 0.9995 | |
0.5 | –82.030 | –2704.3 | 14.228 | 0.9997 | 2.06 |
0.6 | 148.11 | –12,870 | –19.990 | 0.9989 | |
0.7 | –232.67 | 4762.9 | 36.652 | 0.9989 | |
0.8 | –424.68 | 14,055 | 65.078 | 0.9970 | |
0.9 | –695.38 | 26,602 | 105.39 | 0.9976 | |
1.0 | –500.92 | 18,012 | 76.502 | 0.9952 |
m | λ | h | Overall RMSD (%) |
---|---|---|---|
0.0 | 3.4715 | 2432.6 | |
0.1 | 2.6856 | 3057.3 | |
0.2 | 2.1792 | 3560.1 | |
0.3 | 1.2242 | 6269.0 | |
0.4 | 0.77310 | 9283.7 | |
0.5 | 0.15470 | 45745 | 4.68 |
0.6 | 0.72260 | 9229.4 | |
0.7 | 0.38320 | 17,070 | |
0.8 | 0.06130 | 98,464 | |
0.9 | 0.99860 | 5956.3 | |
1.0 | 1.6304 | 4441.8 |
m | log xYal | Overall RMSD (%) | ||||
---|---|---|---|---|---|---|
T = 298.2 K | T = 303.2 K | T = 308.2 K | T = 313.2 K | T = 318.2 K | ||
0.1 | –6.24 | –6.02 | –5.83 | –5.67 | –5.48 | |
0.2 | –5.77 | –5.57 | –5.37 | –5.22 | –5.04 | |
0.3 | –5.30 | –5.11 | –4.92 | –4.77 | –4.60 | |
0.4 | –4.83 | –4.65 | –4.47 | –4.32 | –4.16 | 5.21 |
0.5 | –4.36 | –4.19 | –4.01 | –3.87 | –3.71 | |
0.6 | –3.89 | –3.74 | –3.56 | –3.42 | –3.27 | |
0.7 | –3.41 | –3.28 | –3.11 | –2.97 | –2.83 | |
0.8 | –2.94 | –2.82 | –2.65 | –2.52 | –3.39 | |
0.9 | –2.47 | –2.36 | –2.20 | –2.07 | –1.94 |
System | Jouyban–Acree | Jouyban–Acree–van’t Hoff |
---|---|---|
A1 14.164 | ||
{PEG 400 (1) + H2O (2)} | Ji 11595 | B1 –5611.6 |
A2 12.880 | ||
B2 –8445.1 | ||
Ji 10894 | ||
RMSD (%) | 0.98 | 1.09 |
m | ΔsolH0/kJ mol−1 | ΔsolG0/kJ mol−1 | ΔsolS0/J mol−1 K−1 | R2 |
---|---|---|---|---|
0.0 | 70.30 | 37.20 | 107.4 | 0.9971 |
0.1 | 68.35 | 34.44 | 109.9 | 0.9976 |
0.2 | 64.58 | 31.80 | 106.4 | 0.9987 |
0.3 | 63.89 | 29.09 | 112.9 | 0.9978 |
0.4 | 59.75 | 26.42 | 108.1 | 0.9995 |
0.5 | 58.91 | 23.74 | 114.1 | 0.9998 |
0.6 | 55.52 | 21.04 | 111.9 | 0.9990 |
0.7 | 54.46 | 18.36 | 117.1 | 0.9988 |
0.8 | 50.25 | 15.68 | 112.2 | 0.9964 |
0.9 | 49.52 | 13.01 | 118.5 | 0.9958 |
1.0 | 46.72 | 10.37 | 117.9 | 0.9942 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alghaith, A.F.; Mahdi, W.A.; Haq, N.; Alshehri, S.; Shakeel, F. Solubility and Thermodynamic Properties of Febuxostat in Various (PEG 400 + Water) Mixtures. Materials 2022, 15, 7318. https://doi.org/10.3390/ma15207318
Alghaith AF, Mahdi WA, Haq N, Alshehri S, Shakeel F. Solubility and Thermodynamic Properties of Febuxostat in Various (PEG 400 + Water) Mixtures. Materials. 2022; 15(20):7318. https://doi.org/10.3390/ma15207318
Chicago/Turabian StyleAlghaith, Adel F., Wael A. Mahdi, Nazrul Haq, Sultan Alshehri, and Faiyaz Shakeel. 2022. "Solubility and Thermodynamic Properties of Febuxostat in Various (PEG 400 + Water) Mixtures" Materials 15, no. 20: 7318. https://doi.org/10.3390/ma15207318
APA StyleAlghaith, A. F., Mahdi, W. A., Haq, N., Alshehri, S., & Shakeel, F. (2022). Solubility and Thermodynamic Properties of Febuxostat in Various (PEG 400 + Water) Mixtures. Materials, 15(20), 7318. https://doi.org/10.3390/ma15207318