Influence of Al-O and Al-C Clusters on Defects in Graphene Nanosheets Derived from Coal-Tar Pitch via Al4C3 Precursor
Abstract
:1. Introduction
2. Experiment and Calculation Methods
2.1. Materials and Characterizations
2.2. Calculation Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Morozov, S.V.; Nosvoselov, K.S.; Katsnelson, M.I.; Schedin, F.; Elias, D.C.; Jaszczak, J.A.; Geim, A.K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602. [Google Scholar] [CrossRef] [Green Version]
- Balandin, A.A.; Ghosh, S.; Bao, W.Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.F.; Liu, C.; Ren, W.W.; Sun, J.W.; Zhang, Y.C.; Zou, L.C. Synergistic effect of NF and rGO in preparing 3D NiFe-LDH/rGO@NF composites on electrocatalysts performance. J. Alloy. Compd. 2022, 901, 163510. [Google Scholar] [CrossRef]
- Yoo, E.; Kim, J.; Hosono, E.; Zhou, H.; Kudo, T.; Honma, I. Large reversible Li storage of graphene nanosheet families for use in rechargeable lithium ion batteries. Nano Lett. 2008, 8, 2277–2282. [Google Scholar] [CrossRef]
- Lee, X.J.; Hiew, B.Y.Z.; Lai, K.C.; Lee, L.Y.; Gan, S.Y.; Thangalazhy-Gopakumar, S.; Rigby, S. Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. J. Taiwan Inst. Chem. Eng. 2019, 98, 163–180. [Google Scholar] [CrossRef]
- Sun, Z.X.; Fang, S.Y.; Hu, Y.H. 3D graphene materials: From understanding to design and synthesis control. Chem. Rev. 2020, 120, 10336–10453. [Google Scholar] [CrossRef] [PubMed]
- Knieke, C.; Berger, A.; Voigt, M.; Taylor, R.N.K.; Rohrl, J.; Peukert, W. Scalable production of graphene sheets by mechanical delamination. Carbon 2010, 48, 3196–3204. [Google Scholar] [CrossRef]
- Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F.M.; Sun, Z.Y.; De, S.; McGovern, I.T.; Holland, B.; Byrne, M.; Gun’ko, Y.K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563–568. [Google Scholar] [CrossRef]
- Hamilton, C.E.; Lomeda, J.R.; Sun, Z.Z.; Tour, J.M.; Barron, A.R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460–3462. [Google Scholar] [CrossRef] [PubMed]
- Qian, W.; Hao, R.; Hou, Y.L.; Tian, Y.; Shen, C.M.; Gao, H.J.; Liang, X.L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706–712. [Google Scholar] [CrossRef] [Green Version]
- Lei, Y.; Xu, J.; Li, R.; Chen, F.F. Solvothermal synthesis of CdS-graphene composites by varying the Cd/S ratio. Ceram. Int. 2015, 41, 3158–3161. [Google Scholar] [CrossRef]
- Pu, N.W.; Wang, C.A.; Sung, Y.; Liu, Y.M.; Ger, M.D. Production of few-layer graphene by supercritical CO2 exfoliation of graphite. Mater. Lett. 2009, 63, 1987–1989. [Google Scholar] [CrossRef]
- Rangappa, D.; Sone, K.; Wang, M.S.; Gautam, U.K.; Golberg, D.; Itoh, H.; Ichihara, M.; Honma, I. Rapid and direct conversion of graphite crystals into high-yielding, good-quality graphene by supercritical fluid exfoliation. Chem. Eur. J. 2010, 16, 6488–6494. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Zhou, X.Z.; Zhang, J.; Boey, F.; Zhang, H. Direct electrochemical reduction of single-layer graphene oxide and subsequent functionalization with glucose oxidase. J. Phys. Chem. C 2009, 113, 14071–14075. [Google Scholar] [CrossRef]
- Song, J.; Kang, S.W.; Lee, Y.W.; Park, Y.; Kim, J.H.; Han, S.W. Regulating the catalytic function of reduced graphene oxides using capping agents for metal-free catalysis. ACS Appl. Mater. Interfaces 2017, 9, 1692–1701. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.X.; Wang, B.; Park, J.; Wang, Y.; Sun, B.; Yao, J. Highly efficient and large-scale synthesis of graphene by electrolytic exfoliation. Carbon 2009, 47, 3242–3246. [Google Scholar] [CrossRef]
- Mao, M.; Wang, M.M.; Hu, J.Y.; Lei, G.; Chen, S.Z.; Liu, H.T. Simultaneous electrochemical synthesis of few-layer graphene flakes on both electrodes in protic ionic liquids. Chem. Commun. 2013, 49, 5301–5303. [Google Scholar] [CrossRef] [PubMed]
- Kosynkin, D.V.; Higginbotham, A.L.; Sinitskii, A.; Lomeda, J.R.; Dimiev, A.; Price, B.K.; Tour, J.M. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 2009, 458, 872–876. [Google Scholar] [CrossRef] [PubMed]
- Jiao, L.Y.; Zhang, L.; Wang, X.R.; Diankov, G.; Dai, H.J. Narrow graphene nanoribbons from carbon nanotubes. Nature 2009, 458, 877–880. [Google Scholar] [CrossRef] [PubMed]
- Fuhrer, M.S.; Lau, C.N.; MacDonald, A.H. Graphene: Materially better carbon. MRS Bull. 2010, 35, 289–295. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Zhao, Y.; Jang, H.; Lee, S.Y.; Kim, J.M.; Kim, K.S.; Ahn, J.-H.; Kim, P.; Choi, J.-Y.; Hong, B.H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Berger, C.; Song, Z.M.; Li, X.B.; Wu, X.S.; Brown, N.; Naud, C.; Mayou, D.; Li, T.B.; Hass, J.; Marchenkov, A.N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191–1196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aristov, V.Y.; Urbanik, G.; Kummer, K.; Vyalikh, D.V.; Molodtsova, O.V.; Preobrajenski, A.B.; Zakharov, A.A.; Hess, C.; Hanke, T.; Buchner, B.; et al. Graphene synthesis on cubic SiC/Si wafers. Perspectives for mass production of graphene-based electronic devices. Nano Lett. 2010, 10, 992–995. [Google Scholar] [CrossRef]
- Wang, L.; Tian, C.G.; Wang, H.; Ma, Y.G.; Wang, B.L.; Fu, H.G. Mass production of graphene via an in situ self-generating template route and its promoted activity as electrocatalytic support for methanol electroxidization. J. Phys. Chem. C 2010, 114, 8727–8733. [Google Scholar] [CrossRef]
- Cai, J.M.; Ruffieux, P.; Jaafar, R.; Bieri, M.; Braun, T.; Blankenburg, S.; Muoth, M.; Seitsonen, A.P.; Saleh, M.; Feng, X.L.; et al. Atomically precise bottom-up fabrication of graphene nanoribbons. Nature 2010, 466, 470–473. [Google Scholar] [CrossRef]
- Maki-Arvela, P.; Anugwom, I.; Virtanen, P.; Sjoholm, R.; Mikkola, J.P. Dissolution of lignocellulosic materials and its constituents using ionic liquids-A review. Ind. Crop. Prod. 2010, 32, 175–201. [Google Scholar] [CrossRef]
- Li, N.; Wang, Z.Y.; Zhao, K.K.; Shi, Z.J.; Gu, Z.N.; Xu, S.K. Large scale synthesis of N-doped multi-layered graphene sheets by simple arc-discharge method. Carbon 2010, 48, 255–259. [Google Scholar] [CrossRef]
- Ma, H.; Shen, Z.G. Exfoliation of graphene nanosheets in aqueous media. Ceram. Int. 2020, 46, 21873–21887. [Google Scholar] [CrossRef]
- El-Gendy, D.M.; Ghany, N.A.A.; Allam, N.K. Green, single-pot synthesis of functionalized Na/N/P co-doped graphene nanosheets for high-performance supercapacitors. J. Electroanal. Chem. 2019, 837, 30–38. [Google Scholar] [CrossRef]
- Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Adekoya, G.J. Synthesis methods of borophene, graphene-loaded polypyrrole nanocomposites and their benefits for energy storage applications: A brief overview. FlatChem 2021, 26, 100211. [Google Scholar] [CrossRef]
- Wang, K.; Zhang, X.L.; Zhang, X.Q.; Lin, Q.L.; Huang, X.D. Preparation of fluffy graphene nanosheets from coal-tar pitch with nano-Al2O3 as filler. J. Anal. Appl. Pyrolysis 2016, 117, 354–356. [Google Scholar] [CrossRef]
- Luo, S.Y.; Li, J.Z.; Zhang, X.L.; Lin, Q.L.; Fang, C.Q. Preparation of monodispersed hollow carbon spheres by direct pyrolysis of coal-tar pitch in the presence of aluminum isopropoxide. J. Anal. Appl. Pyrolysis 2018, 135, 10–14. [Google Scholar] [CrossRef]
- Gubernat, M.; Fraczek-Szczypta, A.; Tomala, J.; Blazewicz, S. Catalytic graphene formation in coal tar pitch- derived carbon structure in the presence of SiO2 nanoparticles. Ceram. Int. 2018, 44, 3085–3091. [Google Scholar] [CrossRef]
- Xu, H.; Lin, Q.L.; Zhou, T.H.; Chen, T.T.; Lin, S.P.; Dong, S.H. Facile preparation of graphene nanosheets by pyrolysis of coal-tar pitch with the presence of aluminum. J. Anal. Appl. Pyrolysis 2014, 110, 481–485. [Google Scholar] [CrossRef]
- Lin, P.; Zhang, Y.G.; Tan, X.L.; Xiong, R.; Sa, B.S.; Lin, Q.L. Microscopic origin of graphene nanosheets derived from coal-tar pitch by treating Al4C3 as the intermediate. Phys. Chem. Chem. Phys. 2021, 23, 12449–12455. [Google Scholar] [CrossRef]
- Klein, B.P.; Ihle, A.; Kachel, S.R.; Ruppenthal, L.; Hall, S.J.; Sattler, L.; Weber, S.M.; Herritsch, J.; Jaegermann, A.; Ebeling, D.; et al. Topological Stone-Wales defects enhance bonding and electronic coupling at the graphene/metal interface. ACS Nano 2022, 16, 11979–11987. [Google Scholar] [CrossRef]
- Moon, H.S.; Lee, J.H.; Kwon, S.; Kim, I.T.; Lee, S.G. Mechanisms of Na adsorption on graphene and graphene oxide: Density functional theory approach. Carbon Lett. 2015, 16, 116–120. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.X.; Yu, L.; Wu, X.Q.; Hu, W.H. Experimental sensing and density functional theory study of H2S and SOF2 adsorption on Au-modified graphene. Adv. Sci. 2015, 2, 1500101. [Google Scholar] [CrossRef]
- Folorunso, O.; Hamam, Y.; Sadiku, R.; Ray, S.S.; Adekoya, G.J. Investigation of graphene loaded polypyrrole for lithium-ion battery. Mater. Today Proc. 2021, 38, 635–638. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmuller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186. [Google Scholar] [CrossRef] [PubMed]
- Kresse, G.; Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 1999, 59, 1758–1775. [Google Scholar] [CrossRef]
- Blochl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [Green Version]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar] [CrossRef] [Green Version]
- Wang, G.J.; Peng, L.Y.; Li, K.Q.; Zhu, L.G.; Zhou, J.; Miao, N.H.; Sun, Z.M. ALKEMIE: An intelligent computational platform for accelerating materials discovery and design. Comput. Mater. Sci. 2021, 186, 110064. [Google Scholar] [CrossRef]
- Yang, X.H.; Sa, B.S.; Xu, C.; Zhan, H.B.; Anpo, M.; Sun, Z.M. Enhanced photocatalytic performance of black phosphorene by isoelectronic co-dopants. Inorg. Chem. Front. 2019, 6, 2369–2378. [Google Scholar] [CrossRef]
- Silvi, B.; Savin, A. Classification of chemical bonds based on topological analysis of electron localization functions. Nature 1994, 371, 683–686. [Google Scholar] [CrossRef]
- Sa, B.S.; Miao, N.H.; Zhou, J.; Sun, Z.M.; Ahuja, R. Ab initio study of the structure and chemical bonding of stable Ge3Sb2Te6. Phys. Chem. Chem. Phys. 2010, 12, 1585–1588. [Google Scholar] [CrossRef]
- Shu, Y.; He, K.J.; Xiong, R.; Cui, Z.; Yang, X.H.; Xu, C.; Zheng, J.Y.; Wen, C.L.; Wu, B.; Sa, B.S. Strain engineering on the electronic properties and interface contact of graphene/GeN3 van der Waals heterostructure. Appl. Surf. Sci. 2022, 604, 154540. [Google Scholar] [CrossRef]
- Peng, Q.; Hu, K.M.; Sa, B.S.; Zhou, J.; Wu, B.; Hou, X.H.; Sun, Z.M. Unexpected elastic isotropy in a black phosphorene/TiC2 van der Waals heterostructure with flexible Li-ion battery anode applications. Nano Res. 2017, 10, 3136–3150. [Google Scholar] [CrossRef]
- Tang, W.; Sanville, E.; Henkelman, G. A grid-based Bader analysis algorithm without lattice bias. J. Phys. Condes. Matter 2009, 21, 084204. [Google Scholar] [CrossRef] [PubMed]
Orbitals | C 1s | O 1s | Al 2p | ||||||
---|---|---|---|---|---|---|---|---|---|
Spectra | Al-C | C=C sp2 | C-C sp3 | C-O | Al-O | C-O | H-O-H | Al0 | Al3+ |
Atomic (%) | 3.06 | 36.8 | 23.8 | 12.98 | 7.13 | 12.02 | 2.89 | 0.37 | 0.95 |
Peak B.E. (eV) | 283.3 | 284.2 | 284.8 | 286.0 | 531.2 | 532.3 | 533.5 | 73.8 | 74.8 |
Defect | |||||
---|---|---|---|---|---|
G−DV | 8.622 | 5.312 | −3.310 | −2.018 | −10.640 |
G−SV | 7.238 | 4.272 | −2.966 | 4.391 | −2.847 |
G−SW | 4.764 | 4.643 | −0.121 | 2.848 | −1.916 |
G−O1 | 2.383 | 1.783 | −0.600 | 3.011 | 0.628 |
G−O2 | 0.464 | −1.543 | −2.007 | −3.531 | −3.995 |
G−O3 | 3.067 | 1.514 | −1.553 | 1.170 | −1.897 |
G−O4 | 6.655 | 6.331 | −0.324 | 5.336 | −1.319 |
G−O5 | 6.018 | 5.953 | −0.065 | 10.033 | 4.015 |
G−O6 | 6.855 | 1.822 | −5.033 | −1.096 | −7.951 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, P.; Zhang, Y.; Cui, Z.; Xiong, R.; Wen, C.; Wu, B.; Lin, Q.; Sa, B. Influence of Al-O and Al-C Clusters on Defects in Graphene Nanosheets Derived from Coal-Tar Pitch via Al4C3 Precursor. Materials 2022, 15, 7312. https://doi.org/10.3390/ma15207312
Lin P, Zhang Y, Cui Z, Xiong R, Wen C, Wu B, Lin Q, Sa B. Influence of Al-O and Al-C Clusters on Defects in Graphene Nanosheets Derived from Coal-Tar Pitch via Al4C3 Precursor. Materials. 2022; 15(20):7312. https://doi.org/10.3390/ma15207312
Chicago/Turabian StyleLin, Peng, Yinggan Zhang, Zhou Cui, Rui Xiong, Cuilian Wen, Bo Wu, Qilang Lin, and Baisheng Sa. 2022. "Influence of Al-O and Al-C Clusters on Defects in Graphene Nanosheets Derived from Coal-Tar Pitch via Al4C3 Precursor" Materials 15, no. 20: 7312. https://doi.org/10.3390/ma15207312
APA StyleLin, P., Zhang, Y., Cui, Z., Xiong, R., Wen, C., Wu, B., Lin, Q., & Sa, B. (2022). Influence of Al-O and Al-C Clusters on Defects in Graphene Nanosheets Derived from Coal-Tar Pitch via Al4C3 Precursor. Materials, 15(20), 7312. https://doi.org/10.3390/ma15207312