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Abstract: By treating Al4C3 as the precursor and growth environment, graphene nanosheets (GNs)
can efficiently be derived from coal-tar pitch, which has the advantages of simple preparation
process, high product quality, green environmental protection, low equipment requirements and
low preparation cost. However, the defects in the prepared GNs have not been well understood.
In order to optimize the preparation process, based on density functional theory calculations, the
influence mechanism of Al-O and Al-C clusters on defects in GNs derived from coal-tar pitch via
Al4C3 precursor has been systematically investigated. With minute quantities of oxygen-containing
defects, Al-O and Al-C clusters have been realized in the prepared GNs from X-ray photoelectron
spectroscopy analysis. Therefore, the influences of Al-O and Al-C clusters on graphene with vacancy
defects and oxygen-containing defects are systematically explored from theoretical energy, electron
localization function and charge transfer analysis. It is noted that the remaining Al-O and Al-C
clusters in GNs are inevitably from the thermodynamics point of view. On the other hand, the
existence of defects is beneficial for the further adsorption of Al-O and Al-C clusters in GNs.

Keywords: graphene nanosheets; X-ray photoelectron spectroscopy; first-principles calculations;
defects

1. Introduction

In 2004, Geim and Novoselov obtained graphene for the first time by mechanical
exfoliation [1]. Graphene shows excellent physical and chemical properties such as high
electron mobility, high thermal conductivity and large specific surface area [2–5]. Therefore,
graphene has been widely used in aerospace, solar cells, nanoelectronics, electronic devices
and other fields [6]. It is noted that one of the key problems restricting the application of
graphene is how to achieve large-scale, reproducible and low-cost preparation of high-
quality crystalline graphene nanosheets (GNs) with regular structure, controllable thickness
and controllable size [7,8]. At present, various ways have been proposed for the preparation
of GNs, for instance, the micromechanical exfoliation method [1,9], the liquid phase exfoli-
ation method [10,11], the solvothermal method [12,13], the supercritical fluid exfoliation
method [14,15], the chemical exfoliation method [16,17], the electrochemical exfoliation
method [18,19], the cutting carbon nanotube method [20,21], the chemical vapor deposition
method [22,23], the epitaxial growth method [24,25], the in situ self-generated template
method [26], the organic synthesis method [27,28] and the arc discharge method [29].
However, it is still an open challenge to develop environmentally friendly methods for
GNs [30–32].

Coal-tar pitch is an abundant and cheap natural resource which has been proposed
as the carbon source for the low-cost synthesis of graphene and related materials [33–35].
Using coal pitch and aluminum powder as raw materials, we have prepared GNs with
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aluminum carbide as the intermediate by high-temperature pyrolysis and the acid pickling
method [36,37]. This method has the advantages of a simple preparation process, high
product quality, green environmental protection, lower requirements for equipment and
low preparation cost [36,37]. Nonetheless, we found that the prepared GNs still have a
small amount of defects [36,37], which could play a critical role in the functionality and
performance of graphene [38]. On the other hand, in the pyrolysis reaction, due to the
presence of residual oxygen in the furnace, the aluminum carbide intermediate will be
oxidized to Al-O clusters, which show strong adsorption properties and will be adsorbed on
the defects of GNs [36,37]. In addition, as the most important intermediate in the pyrolysis
reaction, Al4C3 could be decomposed into Al-C clusters and adsorbed on the defects of
GNs [36,37]. It is worth noting that density functional theory (DFT) based simulation
methods give us a powerful tool to unravel the electronic origin of defects in materials in
atomically scale [39–41]. Therefore, it is of great interest and importance to understand the
formation mechanism of the defects as well as the influence mechanism of Al-O and Al-C
clusters in the obtained GNs derived from coal-tar pitch by using Al4C3 as an intermediate.

In this work, by combining the X-ray photoelectron spectroscopy measurements and
density functional theory calculations, we systematically investigated the adsorption per-
formance of Al-O and Al-C clusters on different defects in GNs. The adsorption properties
of Al-O and Al-C clusters on nine defected graphene models as well as the perfect graphene
have been studied by energy, electron localization function and charge transfer analysis.
Our work provides theoretical basis and technical support for improving the preparation
process and the quality of GNs from coal-tar pitch.

2. Experiment and Calculation Methods
2.1. Materials and Characterizations

In this paper, following the optimal graphene preparation process studied by our
previous work [37], using coal tar and aluminum powder as raw materials, treating alu-
minum carbide as the intermediate and precursor, GNs were prepared by high-temperature
pyrolysis reaction at 1500 ◦C and HCl acid washing via a four-step synthesis method. X-ray
photoelectron spectroscopy (XPS, K-Alpha+) was used to detect the relative content and
chemical valence state of each atom and functional group of the graphene nanosheets after
acid washing. Monochromatic Al Kα was used as the excitation source. The “Thermo
Avantage 5.52” software was used for the XPS data deconvolutions.

2.2. Calculation Methods

DFT calculations using the projected augmented wave method implemented in the
Vienna ab-initio simulation package (VASP) code were performed [42–44]. The general-
ized gradient approximation (GGA) Perdew–Burke–Ernzerhof (PBE) [45] is used for the
exchange-correlation pseudopotentials. Plane-wave basis set was used with an energy
cutoff of 500 eV. Both relaxation convergence for electrons and ions were 1 × 10−4 eV.
We adopted graphene in the orthorhombic lattice with a 10 × 10 × 1 supercell including
100 C atoms for the defect models. A k-mesh of 1 × 1 × 1 was used for the sampling of the
Brillouin zone. The van der Waals (vdW) interaction was considered at the DFT-D3 level as
proposed by Grimme [46]. We used the ALKEMIE platform to deal with the calculation
results [47].

3. Results and Discussion

The prepared GNs following the same synthesis condition from our previous work [37]
were analyzed by X-ray photoelectron spectroscopy (XPS), as shown in Figure 1. Table 1
lists the atomic concentration and peak binding energy of our prepared GNs. Figure 1a
shows the full XPS spectrum of GNs, where the peak positions of C1s, O1s and Al 2p are
marked. Herein, the strength of C1s peak is much higher than the others, indicating the
carbon bonding dominates the samples. The results agree well with our previous XRD,
TEM and Raman results [37]. On the other hand, the O1s cannot be ignored in the full XPS
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spectrum. The result indicates that we have produced oxygen-containing defects in GNs.
Moreover, since Al4C3 is treated as the precursor and growth environment for GNs, a weak
Al2p peak is observed as well. Herein, the limited strength of the Al2p peak confirms that
most of the Al4C3 precursor has been washed out in the acid washing process. Figure 1b
further displays the C1s spectrum in detail. It can be seen that the C=C and C-C bonds
dominate the C1s states. Moreover, the obtained GNs contain a small amount of C-O and
Al-C bonds. Figure 1c illustrates the O1s spectrum in detail. It shows the existence of
Al-O bonds and C-O bonds. The small amount of H-O-H peaks indicates the remaining
adsorption H2O molecules in GNs after drying. Figure 1c is the Al2p spectrum in detail.
The Al3+ peak refers to the remaining Al4C3 after the acid washing process and the Al0

peak refers to the existence of the Al-C or Al-O cluster in GNs. Combining the above
spectrums, we confirmed the oxygen-containing defects and the Al-O and Al-C clusters in
the obtained GNs. Therefore, we have built 9 different graphene defect models based on
the XPS analysis for further DFT calculations. Figure 1e illustrates the optimized graphene
defect models as well as the perfect graphene supercell. The calculated C-C bond length is
1.413 Å and agrees well with the well-known C-C bond length in graphene of 1.413 Å. To
simplify, the abbreviation G refers to the perfect graphene. The abbreviations G-DV, G-SV
and G-SW are short for double-vacancy defect, single-vacancy defect and Stone–Wales
defect, respectively. G-O1 to G-O6 refer to the different possible oxygen-containing defect
graphene models. The defect formation energies EG

f without any adsorptions for the defects
models in Figure 1e were calculated according to [48]:

EG
f = Edefect − EG + µC − µO (1)

where Edefect is the total energy of graphene with defect, EG denotes the total energy of
perfect graphene and µC and µO represent the chemical potentials of missing C atom
in graphene and additional O atom in oxygen gas, respectively. The calculated defect
formation energies EG

f are listed in Table 2. The positive values indicate that the formation
of the defects are endothermic processes.
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Table 1. The atomic concentration and peak binding energy of XPS spectrum for C 1s, O 1s and Al 2p.

Orbitals C 1s O 1s Al 2p
Spectra Al-C C=C sp2 C-C sp3 C-O Al-O C-O H-O-H Al0 Al3+

Atomic (%) 3.06 36.8 23.8 12.98 7.13 12.02 2.89 0.37 0.95
Peak B.E. (eV) 283.3 284.2 284.8 286.0 531.2 532.3 533.5 73.8 74.8

Table 2. Defect formation energies (eV) before and after the adsorption of Al-O and Al-C clusters for
different graphene defects.

Defect EG
f EAl-O

f ∆EAl-O
f EAl-C

f ∆EAl-C
f

G−DV 8.622 5.312 −3.310 −2.018 −10.640
G−SV 7.238 4.272 −2.966 4.391 −2.847
G−SW 4.764 4.643 −0.121 2.848 −1.916
G−O1 2.383 1.783 −0.600 3.011 0.628
G−O2 0.464 −1.543 −2.007 −3.531 −3.995
G−O3 3.067 1.514 −1.553 1.170 −1.897
G−O4 6.655 6.331 −0.324 5.336 −1.319
G−O5 6.018 5.953 −0.065 10.033 4.015
G−O6 6.855 1.822 −5.033 −1.096 −7.951

To explore the effect of the Al-O cluster adsorption to graphene, the corresponding
defect formation energy EAl−O

f was calculated according to [48]:

EAl−O
f = EAl−O

defect − EAl−O
G + µC − µO (2)

where EAl−O
defect is the total energy of graphene with the defect and adsorption of the Al-O

cluster and EAl−O
G demotes the total energy of the perfect graphene with the adsorption

of the Al-O cluster. The corresponding adsorption structures are illustrated in Figure 2.
The calculated defect formation energies EAl−O

f are listed in Table 2. The change of defect

formation energies ∆EAl−O
f = EAl−O

f − EG
f after the adsorption of the Al-O cluster are

listed in Table 2 as well. It can be seen from Table 2 that the defect formation energy EAl−O
f

of all the defect models decreased after the adsorption of the Al-O cluster, which indicates
that the adsorption of the Al-O cluster makes it easier for the graphene to form defects. The
decreasing values from low to high were the G-O5, G-SW, G-O4, G-O1, G-O3, G-O2, G-SV,
G-DV and G-O6 models. In addition, the change of the defect formation energy ∆EAl−O

f of
the G-O6 model is significantly higher than that of other models, indicating that such an
oxygen-containing defect is more significantly affected by the presence of the Al-O cluster.

A deeper understanding of the influence of the Al-O cluster on graphene with different
defects can be gained by analyzing the electron localization functions (ELF) [49,50] and
charge transfer properties [51]. Figure 3a shows the ELF plots in the (010) plane for different
graphene defect models with the adsorption of the Al-O cluster. It shows a strong electron
localization feature between the C-C bonds in graphene. For the G, G-SW, G-O1, G-O4 and
G-O5 models, notably delocalized electrons with high ELF values close to 1 are observed
around the Al-O clusters in the region around the Al atoms, which correspond to the Al0

states in the XPS spectrum and relate to the remaining unpaired electrons from Al. On the
other hand, for the G-DV, G-SV, G-O2, G-O3 and G-O6 models, the delocalized electrons
have disappeared, since the Al atom is strongly bonded to the graphene models. Figure 3b
illustrates the isosurfaces of charge density difference ρAl−O

diff for different graphene defect
models after the adsorption of the Al-O cluster according to [52]:

ρAl−O
diff = ρdefect+Al−O − (ρdefect + ρAl−O) (3)

where ρdefect+Al−O, ρdefect and ρAl−O denote the charge densities of defect graphene with
adsorption of Al-O cluster, defect graphene without adsorption of Al-O cluster and freely
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Al-O cluster, respectively. The cyan and yellow isosurfaces correspond to the loss and
gain of electrons. Different charge transfer behaviors can be vividly shown from the 3D
isosurface plots. Generally speaking, the more remarkable charge transfer corresponds to
stronger interactions. Obviously, charge transfers between the Al-O cluster and graphene
are observed for the G-DV, G-SV, G-O2, G-O3 and G-O6 models, indicating a strong
interaction between the adsorbed Al-O cluster and the corresponding defects.
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To quantitatively analyze the charge transfer between the adsorbed Al-O cluster and
the graphene, we calculated the electron charge transfer amount eAl−O

trans according to [52]:

eAl−O
trans = eAl−O

free − eAl−O
ad (4)
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where eAl−O
free and eAl−O

ad denote the summarized Bader charge [53] of the Al-O cluster
part for the defect graphene models before and after adsorption, respectively. Figure 4a
summarizes the calculated eAl−O

trans . Herein, the positive and negative values of the electron
charge transfer amount eAl−O

trans indicate the loss and gain of electrons of the Al-O cluster
after adsorption, respectively. It shows that the charge transfer between perfect graphene
without any defect and the Al-O cluster is only 0.02 e, indicating very weak interaction
between them. The existence of all the defects will increase the charge transfer between
the adsorbed Al-O cluster and graphene. The positive eAl−O

trans values around 1 for the G-DV,
G-SV, G-O2, G-O3 and G-O6 models indicate obviously charge transfer from the adsorbed
Al-O cluster to graphene with corresponding defects. Moreover, the negative eAl−O

trans values
for the G-SW, G-O1, G-O4 and G-O5 models represent the charge accumulation around the
adsorbed Al-O cluster for these cases, which agrees well with the previously delocalized
states from the ELF analysis. To further quantitatively analyze the interaction between
the adsorbed Al-O cluster and the graphene defect, we calculated the adsorption binding
energy of the Al-O cluster EAl−O

b according to [52]:

EAl−O
b = Edefect+Al−O − (Edefect + EAl−O) (5)
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Figure 4b shows the calculated −EAl−O
b . Herein, the positive values of −EAl−O

b corre-
spond to the thermopositive reactions. The small positive value of −EAl−O

b = 0.47 eV for
the perfect graphene without any defect indicates that the adsorption of the Al-O cluster
is an exothermic process. Therefore, the remaining Al-O cluster in our GN samples is
inevitable from the thermodynamics point of view. On the other hand, more positive values
of −EAl−O

b for graphene with defects demonstrate the fact that the existence of any defects
is beneficial for the further adsorption of the Al-O cluster.

To explore the effect of the Al-C cluster adsorption to the graphene, the corresponding
defect formation energy EAl−C

f was calculated according to [52]:

EAl−C
f = EAl−C

defect − EAl−C
G + µC − µO (6)

where EAl−C
defect is the total energy of graphene with the defect and the adsorption of Al-C

cluster and EAl−C
G demotes the total energy of the perfect graphene with the adsorption

of Al-C cluster. The corresponding adsorption structures are illustrated in Figure 5. The
calculated defect formation energies EAl−C

f are listed in Table 2. The change of defect

formation energies ∆EAl−C
f = EAl−C

f − EG
f after the adsorption of the Al-C cluster are

listed in Table 2 as well. It can be seen from Table 2 that after the adsorption of the Al-C
cluster, the defect formation energy EAl−C

f for most of the graphene defect models decrease.
The decreasing values from low to high are the G-O4, G-O3, G-SW, G-SV, G-O2, G-O6 and
G-DV models. These cases are similar to the Al-O cluster adsorption models. However, the
defect formation energy EAl−C

f for the G-O1 and G-O5 models increase after the adsorption
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of the Al-C cluster, indicating that the formation of some oxygen-containing defects can be
reduced after the adsorption of the Al-C cluster.
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Figure 5. (a) Top and (b) side views of Al-C cluster adsorption structures for graphene defect models.

Further analysis of the ELF and charge transfer properties is presented to understand
the influence of the Al-C cluster on graphene with different defects in the following.
Figure 6a shows the ELF plots in the (010) plane for the different graphene defect models
with the adsorption of the Al-C cluster. It is similar to the Al-O cluster cases, notably the
delocalized electrons with high ELF values close to 1 are observed around the Al-C clusters
in the region around the Al atoms for the G, G-SW, G-O1, G-O4 and G-O5 models. At
the same time, the delocalized electrons disappear for the G-DV, G-SV, G-O2, G-O3 and
G-O6 models. The results indicate that the influence of the Al-C cluster is similar to the
Al-O cluster. Figure 6b represents the isosurfaces of the charge density difference ρAl−C

diff for
different graphene defect models after the adsorption of the Al-C cluster according to [52]:

ρAl−C
diff = ρdefect+Al−C − (ρdefect + ρAl−C) (7)

where ρdefect+Al−C, ρdefect and ρAl−C denote the charge densities of defect graphene with
the adsorption of the Al-C cluster, the defect graphene without the adsorption of the Al-C
cluster and the free Al-C cluster, respectively. It is similar to the Al-O cluster cases as
well, as obvious charge transfers between the Al-C cluster and graphene are observed for
the G-DV, G-SV, G-O2, G-O3 and G-O6 models, indicating strong interaction between the
adsorbed Al-C cluster and the corresponding defects.
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The electron charge transfer amount eAl−C
trans is further calculated to quantitatively

analyze the charge transfer between the adsorbed Al-C cluster and the graphene according
to [52]:

eAl−C
trans = eAl−C

free − eAl−C
ad (8)

where eAl−C
free and eAl−C

ad denote the summarized Bader charge of the Al-C cluster part for
the defect graphene models before and after adsorption, respectively. The calculated eAl−C

trans
is illustrated in Figure 7a, where the positive values of the electron charge transfer amount
eAl−C

trans for all the graphene defect models indicate the loss of electrons of the Al-C cluster
after adsorption. The charge transfer between the perfect graphene without any defect
and the Al-C cluster is 0.1 e, indicating very weak interaction similar to the Al-O cluster
and the perfect graphene. In addition, the large positive eAl−O

trans values greater than 1 for
the G-DV, G-SV, G-O2, G-O3 and G-O6 models indicate an obvious charge transfer from
the adsorbed Al-C cluster to the graphene with corresponding defects, which is similar
to the Al-O cluster cases as well. However, for the G-SW, G-O1, G-O4 and G-O5 models,
positive eAl−O

trans values smaller than 1 are obtained, which differs from the negative values
for the Al-O cluster cases. In spite of this, the charge transfer from the Al-C cluster to
corresponding graphene defect models is limited. Therefore, the delocalized ELF states can
be found for the G-SW, G-O1, G-O4 and G-O5 models. To further quantitatively analyze
the interaction between the adsorbed Al-C cluster and the graphene defect, we calculated
the adsorption binding energy of the Al-C cluster EAl−C

b according to [52]:

EAl−C
b = Edefect+Al−C − (Edefect + EAl−C) (9)

Figure 7b shows the calculated −EAl−C
b . It is similar to the Al-O cluster cases, where

the positive values of −EAl−C
b correspond to the thermopositive reactions. The positive

value of −EAl−C
b = 0.73 eV for the perfect graphene without any defect indicates that the

adsorption of the Al-C cluster is an exothermic process, and the interaction between the
Al-C cluster and perfect graphene is greater than that of the Al-O cluster. Therefore, the
remaining Al-C cluster in the GN samples is inevitable from the thermodynamics point of
view. Moreover, except for the G-O1 and G-O5 models, more positive values of −EAl−O

b for
the graphene with defects demonstrates the fact that the existence of the other defects is
beneficial for the further adsorption of the Al-O cluster.
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4. Conclusions

To conclude, by combining the X-ray photoelectron spectroscopy measurements and
density functional theory calculations, we have systematically investigated the adsorption
performance of the Al-O and Al-C clusters on perfect graphene and graphene with a double-
vacancy defect, single-vacancy defect, Stone–Wales defect and different oxygen-containing
defects. The minute quantities of oxygen-containing defects in Al-O and Al-C clusters
have been realized in the prepared GNs from the additional XPS analysis. The adsorption
properties of the Al-O and Al-C clusters have been revealed from the DFT calculations. The
positive values of the defect formation energy indicate that the formation of the defects in
graphene are endothermic processes, and the presence of Al-O and Al-C clusters makes it
easier for the graphene to form most types of defects. Furthermore, the remaining Al-O
and Al-C clusters in the GNs are inevitable from the thermodynamics point of view. On
the other hand, the existence of defects is beneficial for the further adsorption of Al-O and
Al-C clusters in the GNs.
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