Spectroscopic and Physicochemical Investigations of Azomethines with Triphenylamine Core towards Optoelectronics
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Measurements
2.3. Synthesis of Triphenylamine Based Azomethines
2.3.1. Synthesis of TPA-DT
2.3.2. Synthesis of TPA-tHB
2.3.3. Synthesis of TPA-dHB
3. Results and Discussion
3.1. Structural Characterization
3.2. Thermal Properties
3.3. Redox Properties
3.4. DFT Calculations
3.5. Photophysical Properties
3.6. Photovoltaic Tests
4. Conclusions
- (a)
- Substitution of TPA with amino-thiophene-3,4-dicarboxylic acid diethyl ester let to obtained thermally induced amorphous material with high Tg, and on the other hand it resulted in a decrease in thermal stability compared to azomethine with hexyloxyphenyl structures;
- (b)
- The imine with three hexyloxyphenyl units undergoes oxidation slightly easier, but in the case of azomethines with such substituent reduction was not observed;
- (c)
- Replacement of hexyloxyphenyl groups with amino-thiophene-3,4-dicarboxylic acid diethyl ester units leading to the wide absorption window;
- (d)
- Addition of the synthesized imines to the P3HT:PCBM blend caused emission quenching, thus rationalizing testing them as donors in BHJ solar cells;
- (e)
- The best donor activity showed imine with thiophene rings, and the devices based on its blend with P3HT and PCBM showed the highest JSC of 8.20 mAcm−2, which results in the best of PCE.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chiang, C.K.; Fincher, C., Jr.; Park, Y.W.; Heeger, A.J.; Shirakawa, H.; Louis, E.J.; Gau, S.C.; MacDiarmid, A.G. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 1977, 39, 1098. [Google Scholar] [CrossRef]
- McGehee, M.; Miller, E.K.; Moses, D.; Heeger, A.J. Twenty years of conducting polymers: From fundamental science to applications. Adv. Synth. Met. Twenty Years Prog. Sci. Technol. 1999, 98–205. [Google Scholar]
- Fujita, M.; Ishihara, K.; Ueno, T.; Asano, T.; Noda, S.; Ohata, H.; Tsuji, T.; Nakada, H.; Shimoji, N. Optical and electrical characteristics of organic light-emitting diodes with two-dimensional photonic crystals in organic/electrode layers. Jpn. J. Appl. Phys. 2005, 44, 3669. [Google Scholar] [CrossRef]
- Braun, D. Semiconducting polymer LEDs. Mater. Today 2002, 5, 32–39. [Google Scholar] [CrossRef]
- He, C.; He, Q.; Yi, Y.; Wu, G.; Bai, F.; Shuai, Z.; Li, Y. Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. J. Mater. Chem. 2008, 18, 4085–4090. [Google Scholar] [CrossRef]
- Bronstein, H.; Chen, Z.; Ashraf, R.S.; Zhang, W.; Du, J.; Durrant, J.R.; Shakya Tuladhar, P.; Song, K.; Watkins, S.E.; Geerts, Y. Thieno [3, 2-b] thiophene—diketopyrrolopyrrole-containing polymers for high-performance organic field-effect transistors and organic photovoltaic devices. J. Am. Chem. Soc. 2011, 133, 3272–3275. [Google Scholar] [CrossRef]
- Bundgaard, E.; Krebs, F.C. Low band gap polymers for organic photovoltaics. Sol. Energy Mater. Sol. Cells 2007, 91, 954–985. [Google Scholar] [CrossRef] [Green Version]
- Dufresne, S.; Skene, W. Optoelectronic property tailoring of conjugated heterocyclic azomethines–the effect of pyrrole, thiophene and furans. J. Phys. Org. Chem. 2012, 25, 211–221. [Google Scholar] [CrossRef]
- Kiriy, N.; Bocharova, V.; Kiriy, A.; Stamm, M.; Krebs, F.C.; Adler, H.-J. Designing thiophene-based azomethine oligomers with tailored properties: Self-assembly and charge carrier mobility. Chem. Mater. 2004, 16, 4765–4771. [Google Scholar] [CrossRef]
- Iwan, A.; Mazurak, Z.; Kaczmarczyk, B.; Jarzabek, B.; Sek, D. Synthesis and characterization of polyketanils with 3, 8-diamino-6-phenylphenanthridine moieties exhibiting light emitting properties: Molecular and supramolecular engineering concept. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2008, 69, 291–303. [Google Scholar] [CrossRef] [PubMed]
- Palewicz, M.; Iwan, A.; Sibinski, M.; Sikora, A.; Mazurek, B. Organic photovoltaic devices based on polyazomethine and fullerene. Energy Procedia 2011, 3, 84–91. [Google Scholar] [CrossRef]
- Iwan, A.; Palewicz, M.; Chuchmała, A.; Gorecki, L.; Sikora, A.; Mazurek, B.; Pasciak, G. Opto (electrical) properties of new aromatic polyazomethines with fluorene moieties in the main chain for polymeric photovoltaic devices. Synth. Met. 2012, 162, 143–153. [Google Scholar] [CrossRef]
- Hindson, J.C.; Ulgut, B.; Friend, R.H.; Greenham, N.C.; Norder, B.; Kotlewski, A.; Dingemans, T.J. All-aromatic liquid crystal triphenylamine-based poly (azomethine) s as hole transport materials for opto-electronic applications. J. Mater. Chem. 2010, 20, 937–944. [Google Scholar] [CrossRef]
- Li, W.; Wang, J.; Chen, J.; Bai, F.-Q.; Zhang, H.-X. Theoretical investigation of triphenylamine-based sensitizers with different π-spacers for DSSC. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2014, 118, 1144–1151. [Google Scholar] [CrossRef] [PubMed]
- Cekaviciute, M.; Simokaitiene, J.; Jankauskas, V.; Raisys, S.; Kazlauskas, K.; Jursenas, S.; Grazulevicius, J. Structure–Properties Relationship of Phenylethenyl-Substituted Triphenylamines. J. Phys. Chem. C 2013, 117, 7973–7980. [Google Scholar] [CrossRef]
- Kato, S.-I.; Matsuoka, T.; Suzuki, S.; Asano, M.S.; Yoshihara, T.; Tobita, S.; Matsumoto, T.; Kitamura, C. Synthesis, structures, and properties of neutral and radical cationic S, C, C-bridged triphenylamines. Org. Lett. 2019, 22, 734–738. [Google Scholar] [CrossRef]
- Narayanaswamy, K.; Swetha, T.; Kapil, G.; Pandey, S.S.; Hayase, S.; Singh, S.P. Simple metal-free dyes derived from triphenylamine for DSSC: A comparative study of two different anchoring group. Electrochim. Acta 2015, 169, 256–263. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S.; Li, X.; Zhu, L.; Meng, Q.; Xiao, Y.; Li, D. Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells. Chem. Commun. 2014, 50, 5829–5832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cias, P.; Slugovc, C.; Gescheidt, G. Hole transport in triphenylamine based OLED devices: From theoretical modeling to properties prediction. J. Phys. Chem. A 2011, 115, 14519–14525. [Google Scholar] [CrossRef] [PubMed]
- Lumpi, D.; Holzer, B.; Bintinger, J.; Horkel, E.; Waid, S.; Wanzenböck, H.D.; Marchetti-Deschmann, M.; Hametner, C.; Bertagnolli, E.; Kymissis, I. Substituted triphenylamines as building blocks for star shaped organic electronic materials. New J. Chem. 2015, 39, 1840–1851. [Google Scholar] [CrossRef]
- Gudeika, D.; Bundulis, A.; Mihailovs, I.; Volyniuk, D.; Rutkis, M.; Grazulevicius, J.V. Donor and acceptor substituted triphenylamines exhibiting bipolar charge-transporting and NLO properties. Dye. Pigment. 2017, 140, 431–440. [Google Scholar] [CrossRef]
- Malinauskas, T.; Tomkute-Luksiene, D.; Daskeviciene, M.; Jankauskas, V.; Juska, G.; Gaidelis, V.; Arlauskas, K.; Getautis, V. One small step in synthesis, a big leap in charge mobility: Diphenylethenyl substituted triphenylamines. Chem. Commun. 2011, 47, 7770–7772. [Google Scholar] [CrossRef] [PubMed]
- Pham, H.D.; Hu, H.; Feron, K.; Manzhos, S.; Wang, H.; Lam, Y.M.; Sonar, P. Thienylvinylenethienyl and naphthalene core substituted with triphenylamines—Highly efficient hole transporting materials and their comparative study for inverted perovskite solar cells. Sol. RRL 2017, 1, 1700105. [Google Scholar] [CrossRef] [Green Version]
- Berson, S.; Cecioni, S.; Billon, M.; Kervella, Y.; de Bettignies, R.; Bailly, S.; Guillerez, S. Effect of carbonitrile and hexyloxy substituents on alternated copolymer of polythiophene–Performances in photovoltaic cells. Sol. Energy Mater. Sol. Cells 2010, 94, 699–708. [Google Scholar] [CrossRef]
- Bogdanowicz, K.A.; Jewłoszewicz, B.; Iwan, A.; Dysz, K.; Przybyl, W.; Januszko, A.; Marzec, M.; Cichy, K.; Świerczek, K.; Kavan, L. Selected Electrochemical Properties of 4, 4’-((1E, 1’E)-((1, 2, 4-thiadiazole-3, 5-diyl) bis (azaneylylidene)) bis (methaneylylidene)) bis (N, N-di-p-tolylaniline) towards Perovskite Solar Cells with 14.4% Efficiency. Materials 2020, 13, 2440. [Google Scholar] [CrossRef] [PubMed]
- Korzec, M.; Kotowicz, S.; Pająk, A.K.; Schab-Balcerzak, E. Symmetrical and asymmetrical imino-naphthalimides in perovskite solar cells. Opto-Electron. Rev. 2021, 4, 175–180. [Google Scholar]
- Nitschke, P.; Jarząbek, B.; Damaceanu, M.-D.; Bejan, A.-E.; Chaber, P. Spectroscopic and electrochemical properties of thiophene-phenylene based Shiff-bases with alkoxy side groups, towards photovoltaic applications. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2021, 248, 119242. [Google Scholar] [CrossRef] [PubMed]
- Damaceanu, M.-D.; Constantin, C.-P.; Bejan, A.-E.; Mihaila, M.; Kusko, M.; Diaconu, C.; Mihalache, I.; Pascu, R. Heteroatom-mediated performance of dye-sensitized solar cells based on T-shaped molecules. Dye. Pigment. 2019, 166, 15–31. [Google Scholar] [CrossRef]
- Bourgeaux, M.; Vomscheid, S.; Skene, W. Optimized Synthesis and Simple Purification of 2, 5-Diamino-thiophene-3, 4-dicarboxylic Acid Diethyl Ester. Synth. Commun. 2007, 37, 3551–3558. [Google Scholar] [CrossRef]
- Bujak, P.; Kulszewicz-Bajer, I.; Zagorska, M.; Maurel, V.; Wielgus, I.; Pron, A. Polymers for electronics and spintronics. Chem. Soc. Rev. 2013, 42, 8895–8999. [Google Scholar] [CrossRef]
- Data, P.; Pander, P.; Zassowski, P.; Mimaite, V.; Karon, K.; Lapkowski, M.; Grazulevicius, J.; Slepski, P.; Darowicki, K. Electrochemically induced synthesis of triphenylamine-based polyhydrazones. Electrochim. Acta 2017, 230, 10–21. [Google Scholar] [CrossRef] [Green Version]
- Bourgeaux, M.; Skene, W. A highly conjugated p-and n-type polythiophenoazomethine: Synthesis, spectroscopic, and electrochemical investigation. Macromolecules 2007, 6, 1792–1795. [Google Scholar] [CrossRef]
- Pająk, A.K.; Kotowicz, S.; Gnida, P.; Małecki, J.G.; Ciemięga, A.; Łuczak, A.; Jung, J.; Schab-Balcerzak, E. Synthesis and Characterization of New Conjugated Azomethines End-Capped with Amino-thiophene-3,4-dicarboxylic Acid Diethyl Ester. Int. J. Mol. Sci. 2022, 23, 8160. [Google Scholar] [CrossRef] [PubMed]
- Yen, H.-J.; Liou, G.-S. Novel blue and red electrochromic poly (azomethine ether) s based on electroactive triphenylamine moieties. Org. Electron. 2010, 11, 299–310. [Google Scholar] [CrossRef]
- Li, Y.; Sonar, P.; Murphy, L.; Hong, W. High mobility diketopyrrolopyrrole (DPP)-based organic semiconductor materials for organic thin film transistors and photovoltaics. Energy Environ. Sci. 2013, 6, 1684–1710. [Google Scholar] [CrossRef]
- Wałęsa-Chorab, M.; Tremblay, M.H.; Skene, W.G. Hydrogen-Bond and Supramolecular-Contact Mediated Fluorescence Enhancement of Electrochromic Azomethines. Chem.–A Eur. J. 2016, 22, 11382–11393. [Google Scholar] [CrossRef]
- Más-Montoya, M.; Janssen, R.A. The effect of H-and J-aggregation on the photophysical and photovoltaic properties of small thiophene–pyridine–DPP molecules for bulk-heterojunction solar cells. Adv. Funct. Mater. 2017, 27, 1605779. [Google Scholar] [CrossRef] [Green Version]
- Pajak, A.K.; Gnida, P.; Kotowicz, S.; Malecki, J.G.; Libera, M.; Bednarczyk, K.; Schab-Balcerzak, E. New thiophene imines acting as hole transporting materials in photovoltaic devices. Energy Fuels 2020, 34, 10160–10169. [Google Scholar] [CrossRef]
- Bourgeaux, M.; Guarìn, S.A.P.; Skene, W. Photophysical, crystallographic, and electrochemical characterization of novel conjugated thiopheno azomethines. J. Mater. Chem. 2007, 17, 972–979. [Google Scholar] [CrossRef]
- Kaim, A.; Piotrowski, P.; Zarębska, K.; Bogdanowicz, K.A.; Przybył, W.; Kwak, A.; Skompska, M.; Gnida, P.; Schab-Balcerzak, E.; Iwan, A. Thermal imaging and deep optical and electrochemical study of C70 fullerene derivatives with thiophene, pyrrolidine or indene moieties along with electropolymerization with thiophene substituted imine: Blends with P3HT and PTB7. Electrochim. Acta 2022, 426, 140741. [Google Scholar] [CrossRef]
- Nismy, N.A.; Jayawardena, K.I.; Adikaari, A.D.T.; Silva, S.R.P. Photoluminescence Quenching in Carbon Nanotube-Polymer/Fullerene Films: Carbon Nanotubes as Exciton Dissociation Centres in Organic Photovoltaics. Adv. Mater. 2011, 23, 3796–3800. [Google Scholar] [CrossRef] [PubMed]
- Samah, A.M.; Sharif, M.A.; Al-Esseili, R.; Al-Wahish, M.A.; Hodali, H.A.; Müller-Buschbaum, P.; Schmidt-Mende, L.; Al-Hussein, M. Photovoltaic cells based on ternary P3HT:PCBM:Ruthenium(II) complex bearing 8-(diphenylphosphino)quinoline active layer. Colloids Surf. A Physicochem. Eng. Asp. 2021, 622, 126685. [Google Scholar] [CrossRef]
- von Hauff, E.; Parisi, J.; Dyakonov, V. Field effect measurements on charge carrier mobiliries in various polymer-fullerene blend compositions. Thin Solid Film. 2006, 511, 506–511. [Google Scholar] [CrossRef]
- Cook, S.; Katoh, R.; Furube, A. Ultrafast studies of charge generation in PCBM:P3HT blend films following excitation of the fullerene PCBM. J. Phys. Chem. C 2009, 113, 2547–2552. [Google Scholar] [CrossRef]
- Burak, K.; Fakher, A.R.K.; Ahmed, S.A.-A.; Hussain, A.B. Morphological, structural, optical, and photovoltaic cell of copolymer P3HT:ICBA and P3HT:PCBM. Opt.—Int. J. Light Electron Opt. 2020, 204, 164153. [Google Scholar] [CrossRef]
- Chirvase, D.; Parisi, J.; Hummelen, J.C.; Dyakonov, V. Influence of nanomorphology on the photovoltaic action of polymer-fullerene composites. Nanotechnology 2004, 15, 1317. [Google Scholar] [CrossRef] [Green Version]
- Bogdanowicz, K.A.; Jewloszewicz, B.; Dysz, K.; Przybyl, W.; Dylong, A.; Mech, W.; Korona, K.P.; Skompska, M.; Kaim, A.; Kamińska, M. Electrochemical and optical studies of new symmetrical and unsymmetrical imines with thiazole and thiophene moieties. Electrochim. Acta 2020, 332, 135476. [Google Scholar] [CrossRef]
- Iwan, A.; Boharewicz, B.; Tazbir, I.; Malinowski, M.; Filapek, M.; Kłąb, T.; Luszczynska, B.; Glowacki, I.; Korona, K.P.; Kaminska, M. New environmentally friendly polyazomethines with thiophene rings for polymer solar cells. Sol. Energy 2015, 117, 246–259. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Qin, C.; Yang, X.; Yasuda, T.; Islam, A.; Zhang, K.; Peng, W.; Chen, W.; Han, L. A dopant-free hole-transporting material for efficient and stable perovskite solar cells. Energy Environ. Sci. 2014, 7, 2963–2967. [Google Scholar] [CrossRef]
Code | DSC | TGA | |||
---|---|---|---|---|---|
Tm [°C] | Tg [°C] | T5 [°C] | T10 [°C] | Tmax [°C] | |
TPA-DT | 172 | 147 | 277 | 312 | 197, 293, 395 |
TPA-tHB | 102 | - | 393 | 409 | 432 |
TPA-dHB | 79 | - | 380 | 400 | 439 |
Code | Method | Ered 1 | Ered 1(onset) | Eox 1 | Eox 1(onset) | Eox 2 | Eox 3 | ELUMO | LUMO a | EHOMO | HOMO a | Eg |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[V] | [V] | [V] | [V] | [V] | [V] | [eV] | [eV] | [eV] | [eV] | [eV] | ||
TPA-DT | CV | −2.11 | −1.84 | 0.45 | 0.26 | 0.90 | nd | −3.26 | −2.31 | −5.36 | −5.07 | 2.10 |
DPV | −2.03 | −1.78 | 0.40 | 0.20 | 0.88 | nd | −3.32 | −5.30 | 1.98 | |||
TPA-tHB | CV | nd | nd | 0.42 | 0.29 | 0.72 | 1.07 | −2.62 c | −2.09 | −5.39 | −5.34 | 2.77 b |
DPV | nd | nd | 0.38 | 0.28 | 0.71 | 1.02 | −2.61 c | −5.38 | ||||
TPA-dHB | CV | nd | nd | 0.53 | 0.40 | 0.76 | 1.22 | −2.68 c | −2.13 | −5.50 | −5.35 | 2.82 b |
DPV | nd | nd | 0.49 | 0.35 | 0.70 | 1.06 | −2.63 c | −5.45 |
Code | Medium | UV–Vis | PL | ||
---|---|---|---|---|---|
λmax (nm), (b ε·104) | λem (nm) | Stokes Shifts (cm−1) | Φ (%) | ||
TPA-DT | a C6H5Cl | 287 (0.7), 317 sh (0.4), 447 (3.1), 471 (3.2) | - | - | - |
a CHCl3 | 321 sh (1.8), 445 (11), 469 (10.9) | 503 | 2591 | 2.12 | |
a CH2Cl2 | 250 (1.0), 320 sh (0.6), 445 (2.7), 466 (2.6) | 515 | 2979 | 0.36 | |
Film | 317, 455, 483 sh | 532 | 3675 | 0.22 | |
imine:PCBM | 339, 450 sh | 400 | 4498 | - | |
imine:P3HT:PCBM | 333, 435 sh, 511, 556, 604 | 380 | 3714 | - | |
TPA-tHB | a C6H5Cl | 288 (1.2), 400 (3.6) | - | - | - |
a CHCl3 | 324 (2.1), 330 sh, 400 (11.4) | 454 | 2974 | 0.06 | |
a CH2Cl2 | 242 (1.1), 295 (0.6), 336 sh, 398 (3.5) | 455 | 3148 | 0.50 | |
Film | 339 sh, 398, 422 sh | 460 | 3386 | 0.84 | |
imine:PCBM | 334, 401 | 390 | 4299 | - | |
imine:P3HT:PCBM | 336, 430 sh, 506, 509, 555 sh, 605 sh | 393 | 4316 | - | |
TPA-dHB | a C6H5Cl | 289 (1.9), 367 sh (1.6), 400 (1.1) | - | - | - |
a CHCl3 | 364 sh (4.6), 401 (6.7), 478 sh (0.4) | 460 | 3199 | 0.10 | |
a CH2Cl2 | 248 (0.6), 278 (0.5), 364 sh (1.2), 401 (2.0) | 456 | 3008 | 0.04 | |
Film | 370 sh, 400 | 460 | 3261 | 2.22 | |
imine:PCBM | 334, 405 | 449 | 3624 | - | |
imine:P3HT:PCBM | 335, 512, 556 sh, 605 sh | 388 | 7668 | - | |
P3HT | Donor:PCBM | 336, 502, 561 sh, 607 sh | 387 | 3922 | - |
Active Layer Structure | Voc [mV] | Jsc [mA cm−2] | FF [–] | PCE [%] | d [nm] | RMS [nm] |
---|---|---|---|---|---|---|
TPA-DT:PC60BM (1:1.5) | 616 (±10) | 0.90 (±0.05) | 0.31 (±0.01) | 0.18 (±0.02) | 40 | 7 |
TPA-tHB:PC60BM (1:1.5) | 457 (±4) | 0.72 (±0.04) | 0.28 (±0.01) | 0.09 (±0.03) | 45 | 7 |
TPA-dHB:PC60BM (1:1.5) | 503 (±15) | 0.67 (±0.03) | 0.16 (±0.01) | 0.05 (±0.02) | 55 | 6 |
TPA-DT:P3HT:PC60BM (1:8:13) | 416 (±9) | 8.20 (±0.13) | 0.30 (±0.01) | 1.05 (±0.05) | 80 | 5 |
TPA-tHB:P3HT:PC60BM (1:8:13) | 475 (±12) | 1.10 (±0.15) | 0.16 (±0.01) | 0.15 (±0.02) | 85 | 7 |
TPA-dHB:P3HT:PC60BM (1:8:13) | 339 (±5) | 5.01 (±0.20) | 0.30 (±0.01) | 0.51 (±0.11) | 85 | 7 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Amin, M.F.; Gnida, P.; Kotowicz, S.; Małecki, J.G.; Siwy, M.; Nitschke, P.; Schab-Balcerzak, E. Spectroscopic and Physicochemical Investigations of Azomethines with Triphenylamine Core towards Optoelectronics. Materials 2022, 15, 7197. https://doi.org/10.3390/ma15207197
Amin MF, Gnida P, Kotowicz S, Małecki JG, Siwy M, Nitschke P, Schab-Balcerzak E. Spectroscopic and Physicochemical Investigations of Azomethines with Triphenylamine Core towards Optoelectronics. Materials. 2022; 15(20):7197. https://doi.org/10.3390/ma15207197
Chicago/Turabian StyleAmin, Muhammad Faisal, Paweł Gnida, Sonia Kotowicz, Jan Grzegorz Małecki, Mariola Siwy, Paweł Nitschke, and Ewa Schab-Balcerzak. 2022. "Spectroscopic and Physicochemical Investigations of Azomethines with Triphenylamine Core towards Optoelectronics" Materials 15, no. 20: 7197. https://doi.org/10.3390/ma15207197
APA StyleAmin, M. F., Gnida, P., Kotowicz, S., Małecki, J. G., Siwy, M., Nitschke, P., & Schab-Balcerzak, E. (2022). Spectroscopic and Physicochemical Investigations of Azomethines with Triphenylamine Core towards Optoelectronics. Materials, 15(20), 7197. https://doi.org/10.3390/ma15207197