Effect of Microindentation on Electroluminescence of SiC P-I-N Junctions
Abstract
:1. Introduction and Background
2. Sample Preparation and Measurements
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kimoto, T. Bulk and epitaxial growth of silicon carbide. Prog. Cryst. Growth Charact. Mater. 2016, 62, 329–351. [Google Scholar] [CrossRef]
- Neudeck, P.D. Chapter 5: Silicon Carbide Technology. In The VLSI Handbook, 2nd ed.; Chen, W., Ed.; NASA Glenn Research Center, CRC Press: Boca Raton, FL, USA, October 2006. [Google Scholar]
- Kimoto, T.; Cooper, J.A. Fundamentals of Silicon Carbide Technology, Growth, Characterization, Devices, and Applications; Wiley: Hoboken, NJ, USA, 2014; p. 33. [Google Scholar]
- Blevins, J.D. Development of a World Class Silicon Carbide Substrate Manufacturing Capability. IEEE Trans. Semicond. Manuf. 2020, 33. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Tzou, A.-J.; Chang, J.-H.; Chi, Y.-C.; Lin, Y.-H.; Shih, M.-H.; Lee, C.-K.; Wu, C.-I.; Kuo, H.-C.; Chang, C.-Y.; et al. Growing GaN LEDs on amorphous SiC buffer with variable C/Si compositions. Sci. Rep. 2016, 6, 19757. [Google Scholar] [CrossRef] [Green Version]
- Zheludev, N. The life and times of the LED—A 100-year history. Nat. Photon. 2007, 1, 189–192. [Google Scholar] [CrossRef]
- Sridhara, S.G.; Carlsson, F.H.C.; Bergman, J.P.; Janzén, E. Luminescence from stacking faults in 4H SiC. Appl. Phys. Lett. 2001, 79, 3944–3946. [Google Scholar] [CrossRef]
- Juillaguet, S.; Albrecht, M.; Camassel, J.; Chassagne, T. Cathodoluminescence investigation of stacking faults extension in 4H-SiC. Phys. Status Solidi (A) 2007, 204, 2222–2228. [Google Scholar] [CrossRef]
- Ivanov, I.G.; Lindefelt, U.; Henry, A.; Kordina, O.; Hallin, C.; Aroyo, M.; Egilsson, T.; Janzén, E. Phonon replicas at the M point in 4H-SiC: A theoretical and experimental study. Phys. Rev. B 1998, 58, 13634. [Google Scholar] [CrossRef]
- Meli, A.; Muoio, A.; Trotta, A.; Meda, L.; Parisi, M.; La Via, F. Epitaxial Growth and Characterization of 4H-SiC for Neutron Detection Applications. Materials 2021, 14, 976. [Google Scholar] [CrossRef]
- Feng, G.; Suda, J.; Kimoto, T. Characterization of stacking faults in 4H-SiC epilayers by room-temperature microphotoluminescence mapping. Appl. Phys. Lett. 2008, 92, 221906. [Google Scholar] [CrossRef] [Green Version]
- Kamata, I.; Zhang, X.; Tsuchida, H. Photoluminescence of Frank-type defects on the basal plane in 4H–SiC epilayers. Appl. Phys. Lett. 2010, 97, 172107. [Google Scholar] [CrossRef]
- Kim, H.K.; Kim, S.I.; Kim, S.J.; Lee, N.S.; Shin, H.K.; Lee, C.W. Relation between work function and structural properties of triangular defects in 4H-SiC epitaxial layer: Kelvin probe force microscopic and spectroscopic analyses. Nanoscale 2020, 12, 8216–8229. [Google Scholar] [CrossRef]
- Iwata, H.; Lindefelt, U.; Öberg, S.; Briddon, P.R. Localized electronic states around stacking faults in silicon carbide. Phys. Rev. B 2001, 65, 033203. [Google Scholar] [CrossRef]
- Iwata, H.; Lindefelt, U.; Öberg, S.; Briddon, P.R. Stacking faults in silicon carbide. Phys. B Condens. Matter 2003, 340–342, 165–170. [Google Scholar] [CrossRef]
- Iijima, A.; Kimoto, T. Electronic energy model for single Shockley stacking fault formation in 4H-SiC crystals. J. Appl. Phys. 2019, 126, 105703. [Google Scholar] [CrossRef]
- Feng, G.; Suda, J.; Kimoto, T. Triple Shockley type stacking faults in 4H-SiC epilayers. Appl. Phys. Lett. 2009, 94, 091910. [Google Scholar] [CrossRef] [Green Version]
- Caldwell, J.D.; Giles, A.; Lepage, D.; Carrier, D.; Moumanis, K.; Hull, B.A.; Stahlbush, R.E.; Myers-Ward, R.L.; Dubowski, J.J.; Verhaegen, M. Experimental evidence for mobile luminescence center mobility on partial dislocations in 4H-SiC using hyperspectral electroluminescence imaging. Appl. Phys. Lett. 2013, 102, 242109. [Google Scholar] [CrossRef]
- Nagasawa, F.; Takakura, M.; Sekiguchi, H.; Miyamae, Y.; Oku, Y.; Nakahara, K. Prominent luminescence of silicon-vacancy defects created in bulk silicon carbide p-n junction diodes. Sci. Rep. 2021, 11, 1497. [Google Scholar] [CrossRef]
- Ivády, V.; Davidsson, J.; Delegan, N.; Falk, A.; Klimov, R.; Whiteley, S.; Hruszkewycz, S.; Holt, M.; Heremans, F.; Son, N.; et al. Stabilization of point-defect spin qubits by quantum wells. Nat. Commun. 2019, 10, 5607. [Google Scholar] [CrossRef] [PubMed]
- Skowronski, M.; Ha, S. Degradation of Hexagonal Silicon Carbide-based Bipolar Devices. J. Appl. Phys. 2006, 99, 011101. [Google Scholar] [CrossRef]
- Pirouz, P.; Zhang, M.; Demenet, J.-L.; Hobgood, H.M. Transition from brittleness to ductility in SiC. J. Phys. Condens. Matter 2002, 14, 12929. [Google Scholar] [CrossRef]
- Demenet, J.-L.; Hong, M.H.; Pirouz, P. Plastic behaviour of 4H-SiC single crystals deformed at low strain rates. Scr. Mat. 2000, 43, 865–870. [Google Scholar] [CrossRef]
- Mussi, A.; Demenet, J.L.; Rabier, J. TEM study of defects generated in 4H-SiC by microindentations on the prismatic plane. Philos. Mag. Lett. 2006, 86, 561–568. [Google Scholar] [CrossRef]
- Lu, W.; Ou, Y.; Fiordaliso, E.M.; Iwasa, Y.; Jokubavicius, V.; Syväjärvi, M.; Kamiyama, S.; Petersen, P.M.; Ou, H. White light emission from fluorescent SiC with porous surface. Sci. Rep. 2017, 7, 9798. [Google Scholar] [CrossRef]
- Bawa, S.; Zhang, T.; Dow, L.; Peter, S.; Kitai, A. Porous SiC electroluminescence from p–i–n junction and a lateral carrier diffusion model. J. Appl. Phys. 2021, 129, 044501. [Google Scholar] [CrossRef]
- Shah, J.M.; Li, Y.L.; Gessmann, T.; Schubert, E.F. Experimental analysis and theoretical model for anomalously high ideality factors (n >> 2.0) in AlGaN/GaN p-n junction diodes. J. Appl. Phys. 2003, 94, 2627. [Google Scholar] [CrossRef] [Green Version]
- Orlov, V.I.; Yakimov, E.B. Investigation of stacking faults introduced into 4H-SiC crystals by indentation. J. Synch. Investig. 2017, 11, 234–237. [Google Scholar] [CrossRef]
Property | 3C-SiC | 4H-SiC | 6H-SiC |
---|---|---|---|
Bandgap Eg (eV), 300 K | 2.36 | 3.26 | 3.02 |
Electron mobility | 1000 | //c-axis:1200; ⊥c-axis: 1020 | //c-axis: 100; ⊥c-axis: 450 |
Sample Number | Direction | Load (Gram-Force) | Number of Stage 1 Indentation | Total Number after Stage 2 Indentation | |
---|---|---|---|---|---|
Sample 1 | Die edge perpendicular to interdigitations | 90 | 300 | 7 | 13 |
Sample 2 | Edge perpendicular to interdigitations | 100 | 200 | 11 | 22 |
Sample 3 | Edge parallel to interdigitations | 90 | 200 | 11 | 22 |
Sample Number | Before Microindentation | After Stage 1 | After Stage 2 | |
---|---|---|---|---|
Sample 2 | Relative light flux | 1.00 * | 1.77 approx | 2.28 |
Sample 3 | Relative light flux | 1.00 * | 2.70 | 2.29 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, T.; Kitai, A.H. Effect of Microindentation on Electroluminescence of SiC P-I-N Junctions. Materials 2022, 15, 534. https://doi.org/10.3390/ma15020534
Zhang T, Kitai AH. Effect of Microindentation on Electroluminescence of SiC P-I-N Junctions. Materials. 2022; 15(2):534. https://doi.org/10.3390/ma15020534
Chicago/Turabian StyleZhang, Tingwei, and Adrian H. Kitai. 2022. "Effect of Microindentation on Electroluminescence of SiC P-I-N Junctions" Materials 15, no. 2: 534. https://doi.org/10.3390/ma15020534
APA StyleZhang, T., & Kitai, A. H. (2022). Effect of Microindentation on Electroluminescence of SiC P-I-N Junctions. Materials, 15(2), 534. https://doi.org/10.3390/ma15020534