Cenosphere-Based Zeolite Precursors of Lutetium Encapsulated Aluminosilicate Microspheres for Application in Brachytherapy
Abstract
:1. Introduction
- (i)
- Activation of glass surfaces (internal and external) by elaboration of porosity by applying an acid or alkaline treatment;
- (ii)
- Creation of specific binding sites for metal cations, such as nucleophilic or chelating functional groups, and the ability for the ion-exchange interaction;
- (iii)
- Lu(III) sorption or ion exchange;
- (iv)
- Solid-phase transformation of Lu(III) loaded microspheres under heating at a given temperature.
- (1)
- Zeolite NaX is a molecular sieve with faujasite topology, three-dimensional pore structure with 7.4 Å diameter pores, and Si/Al = 1–1.5; due to the large pore size diffusion of lanthanide aqua complexes in the framework channels is not hindered facilitating the Ln3+ exchange up to 85% level at room temperature [24]; the irreversible rare earth ion exchange is characteristic for synthetic faujasites [25];
- (2)
2. Materials and Methods
2.1. Chemicals and Materials
2.2. Hydrothermal Synthesis of Zeolite Layers (Zeolitization)
2.3. Preparation of Lu(III) Loaded Microspheres
2.4. Characterization Techniques
3. Results and Discussion
3.1. Hydrothermal Synthesis of Zeolitized Microspheres
3.2. Lu3+ Sorption and Solid-Phase Transformation of the Lu3+-Loaded Microspheres
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hafeli, U. Radioactive Microspheres for Medical Applications. In Physics and Chemistry Basis of Biotechnology. Focus on Biotechnology; De Cuyper, M., Bulte, J.W.M., Eds.; Springer: Dordrecht, The Netherlands, 2001; Volume 7, pp. 213–248. [Google Scholar] [CrossRef]
- Thomadsen, B.R.; Welsh, J.S.; Hammes, R.J. Microspheres as Microbrachytherapy. In #31 Brachytherapy Physics, 2nd ed.; Thomadsen, B., Rivard, M., Butler, W., Eds.; Medical Physics Publishing: Madison, WI, USA, 2005; Volume 54, p. 982. [Google Scholar]
- Townsend, A.; Price, T.; Karapetis, C. Selective internal radiation therapy for liver metastases from colorectal cancer. Cochrane Database Syst. Rev. 2009, 4, CD007045. [Google Scholar] [CrossRef]
- Dash, A.; Pillai, M.R.; Knapp, F.F., Jr. Production of (177)Lu for Targeted Radionuclide Therapy: Available Options. Nucl. Med. Mol. Imaging 2015, 49, 85–107. [Google Scholar] [CrossRef] [Green Version]
- Poorbaygi, H.; Aghamiri, S.M.R.; Sheibani, S.; Kamali-asl, A.; Mohagheghpoor, E. Production of glass microspheres comprising 90Y and 177Lu for treating of hepatic tumors with SPECT imaging capabilities. Appl. Radiat. Isot. 2011, 69, 1407–1414. [Google Scholar] [CrossRef]
- Sigaev, V.N.; Atroschenko, G.N.; Savinkov, V.I.; Sarkisov, P.D.; Babajev, G.; Lingel, K.; Lorenzi, R.; Poleari, A. Structural rearrangement of the yttrium-depleted surface of HCl-processed yttrium aluminosilicate glass for 90Y-microsphere brachytherapy. Mater. Chem. Phys. 2012, 133, 24–28. [Google Scholar] [CrossRef]
- Erbe, E.M.; Day, D.E. Chemical durability of Y2O3-Al2O3-SiO2 glasses for the in vivo delivery of beta radiation. J. Biomed. Mat. Res. 1993, 27, 1301–1308. [Google Scholar] [CrossRef]
- Kawashita, M.; Shineha, R.; Kim, H.M.; Kokubo, T.; Inoue, Y.; Araki, N.; Nagata, Y.; Hiraoka, M.; Sawada, Y. Preparation of ceramic microspheres for in situ radiotherapy of deep-seated cancer. Biomaterials 2003, 24, 2955–2963. [Google Scholar] [CrossRef]
- Blissett, R.S.; Rowson, N.A. A review of the multi-component utilisation of coal fly ash. Fuel 2012, 97, 1–23. [Google Scholar] [CrossRef]
- Danish, A.; Mosaberpanah, M.A. Formation mechanism and applications of cenospheres: A review. J. Mater. Sci. 2020, 55, 4539–4557. [Google Scholar] [CrossRef]
- Fenelonov, V.B.; Mel’gunov, S.; Parmon, V.N. The properties of cenospheres and the mechanism of their formation during high-temperature coal combustion at thermal power plants. KONA 2010, 28, 189–208. [Google Scholar] [CrossRef]
- Anshits, N.N.; Mikhailova, O.A.; Salanov, A.N.; Anshits, A.G. Chemical composition and structure of the shell of fly ash non-perforated cenospheres produced from the combustion of the Kuznetsk coal (Russia). Fuel 2010, 89, 1849–1862. [Google Scholar] [CrossRef]
- Fomenko, E.V.; Kondratenko, E.V.; Salanov, A.N.; Bajukov, O.A.; Talyshev, A.A.; Maksimov, N.G.; Nizov, V.A.; Anshits, A.G. Novel microdesign of oxidation catalysts. Part 1. Glass crystal microspheres as new catalysts for the oxidative conversion of methane. Catal. Today 1998, 42, 267–272. [Google Scholar] [CrossRef]
- Koopman, M.; Chawla, K.K.; Ricci, W.; Carlisle, K.; Gladsyz, G.M.; Lalor, M.; Jones, M.L.; Kerr, K.; George, M.P.; Gouadec, G.; et al. Titania-coated glass microballoons and cenospheres for environmental applications. J. Mater. Sci. 2009, 44, 1435–1441. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, H.; Li, F.; Cheng, X.; Chen, T. Investigation into electrical conductivity and electromagnetic interference shielding effectiveness of silicone rubber filled with Ag-coated cenosphere particles. Polym. Test. 2010, 29, 609–612. [Google Scholar] [CrossRef]
- Vereshchagina, T.A.; Anshits, N.N.; Sharonova, O.M.; Vasil’eva, N.G.; Vereshchagin, S.N.; Shishkina, N.N.; Fomenko, E.V.; Anshits, A.G. Polyfunctional microspherical materials for long-term burial of liquid radioactive wastes. Glass Phys. Chem. 2008, 34, 547–558. [Google Scholar] [CrossRef]
- Vereshchagina, T.A.; Vereshchagin, S.N.; Shishkina, N.N.; Vasilieva, N.G.; Solovyov, L.A.; Anshits, A.G. Microsphere zeolite materials derived from coal fly ash cenospheres as precursors to mineral-like aluminosilicate hosts for 135,137Cs and 90Sr. J. Nucl. Mater. 2013, 437, 11–18. [Google Scholar] [CrossRef]
- Vereshchagina, T.A.; Kutikhina, E.A.; Chernykh, Y.Y.; Solovyov, L.A.; Zhizhaev, A.M.; Vereshchagin, S.N.; Anshits, A.G. One-step immobilization of cesium and strontium from alkaline solutions via a facile hydrothermal route. J. Nucl. Mater. 2018, 510, 243–255. [Google Scholar] [CrossRef]
- Kutikhina, E.A.; Mazurova, E.V.; Parfenov, V.A.; Fomenko, E.V.; Vereshchagina, T.A. Microsphere zirconomolybdate sorbents for extraction of lanthanides (III) from aqueous solutions. J. SFU Chem. 2017, 3, 311–324. [Google Scholar] [CrossRef] [Green Version]
- Vereshchagin, S.N.; Vereshchagina, T.A.; Shishkina, N.N.; Salanov, A.N.; Anshits, A.G. Microspheric zeolite obtaining from vitrocrystalline cenospheres of power station ashes. Chem. Sustain. Devel. 2008, 16, 511–519. [Google Scholar]
- Vereshchagina, T.A.; Vereshchagin, S.N.; Shishkina, N.N.; Mikhilova, O.A.; Solovyov, L.A.; Anshits, A.G. One-step fabrication of hollow aluminosilicate microspheres with a composite zeolite/glass crystalline shell. Microporous Mesoporous Mater. 2013, 169, 207–211. [Google Scholar] [CrossRef]
- Vereshchagina, T.A.; Kutikhina, E.A.; Solovyov, L.A.; Vereshchagin, S.N.; Mazurova, E.V.; Chernykh, Y.Y.; Anshits, A.G. Synthesis and structure of analcime and analcime-zirconia composite derived from coal fly ash cenospheres. Microporous Mesoporous Mater. 2018, 258, 228–235. [Google Scholar] [CrossRef]
- Breck, D.W. Zeolite Molecular Sieves: Structure, Chemistry, and Use; John Wiley & Sons: New York, NY, USA, 1974; p. 771. [Google Scholar]
- Sherry, H.S. The ion exchange properties of zeolities: III. Rare earth ion exchange of synthetic faujasites. J. Colloid. Interf. Sci. 1968, 28, 288–293. [Google Scholar] [CrossRef]
- Howard, S.S. Irreversibility in rare earth ion-exchange of the synthetic zeolites X and Y. In Colloid and Interface Science; Kerker, M., Ed.; Academic Press: Dordrecht, The Netherlands, 1976; pp. 321–332. [Google Scholar] [CrossRef]
- Robson, H.; Lillerud, K.P. (Eds.) Verified Synthesis of Zeolitic Materials, 2nd ed.; Elsevier Science: Amsterdam, The Netherlands, 2001; p. 266. [Google Scholar] [CrossRef]
- Goscianska, J.; Ptaszkowska-Koniarz, M.; Frankowski, M.; Franus, M.; Panek, R.; Franus, W. Removal of phosphate from water by lanthanum-modified zeolites obtained from fly ash. J. Colloid Interf. Sci. 2018, 513, 72–81. [Google Scholar] [CrossRef]
- Greg, S.J.; Singh, K.S.W. Adsorption, Surface Area, and Porosity; Academic Press: London, UK, 1982; p. 304. [Google Scholar]
No. | System | Sample | T, K | NaOH, mol/L | τ, h |
---|---|---|---|---|---|
1 | 1.0 SiO2/0.18 Al2O3/2.2 Na2O/100 H2O | NaX | 80 | 2.5 | 48 |
2 | 1.0 SiO2/0.18 Al2O3/1.3 Na2O/100 H2O | NaP1 | 120 | 1.5 | 24 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vereshchagina, T.; Kutikhina, E.; Vereshchagin, S.; Buyko, O.; Anshits, A. Cenosphere-Based Zeolite Precursors of Lutetium Encapsulated Aluminosilicate Microspheres for Application in Brachytherapy. Materials 2022, 15, 7025. https://doi.org/10.3390/ma15197025
Vereshchagina T, Kutikhina E, Vereshchagin S, Buyko O, Anshits A. Cenosphere-Based Zeolite Precursors of Lutetium Encapsulated Aluminosilicate Microspheres for Application in Brachytherapy. Materials. 2022; 15(19):7025. https://doi.org/10.3390/ma15197025
Chicago/Turabian StyleVereshchagina, Tatiana, Ekaterina Kutikhina, Sergei Vereshchagin, Olga Buyko, and Alexander Anshits. 2022. "Cenosphere-Based Zeolite Precursors of Lutetium Encapsulated Aluminosilicate Microspheres for Application in Brachytherapy" Materials 15, no. 19: 7025. https://doi.org/10.3390/ma15197025