Microstructure and Electrochemical Characterization of Ti-Sn Binary Alloys for Dental Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Davis, R.; Singh, A.; Jackson, M.J.; Coelho, R.T.; Prakash, D.; Charalambous, C.P.; da Silva, L.R.R.; Ahmed, W.; Lawrence, A.A. A comprehensive review on metallic implant biomaterials and their subtractive manufacturing. Int. J. Adv. Manuf. Technol. 2022, 120, 1473–1530. [Google Scholar] [CrossRef] [PubMed]
- Hwang, M.J.; Park, E.J.; Moon, W.J.; Song, H.J.; Park, Y.J. Characterization of passive layers formed on Ti-10 wt% (Ag, Au, Pd, or Pt) binary alloys and their effects on galvanic corrosion. Corros. Sci. 2015, 96, 152–159. [Google Scholar] [CrossRef]
- Nakagawa, M.; Matsuya, S.; Shiraishi, T.; Ohta, M. Effect of fluoride concentration and pH on corrosion behavior of titanium for dental use. J. Dent. Res. 1999, 78, 1568–1572. [Google Scholar] [CrossRef] [PubMed]
- Choubey, A.; Basu, B.; Balasubramaniam, R. Electrochemical behavior of Ti-based alloys in simulated human body fluid environment. Trends Biomater. Artif. Organs 2005, 18, 64–72. [Google Scholar]
- Geetha, M.; Kamachi Mudali, U.; Gogia, A.K.; Asokamani, R.; Raj, B. Influence of microstructure and alloying elements on corrosion behavior of Ti–13Nb–13Zr alloy. Corros. Sci. 2004, 46, 877–892. [Google Scholar] [CrossRef]
- Wang, Q.Y.; Wang, Y.B.; Lin, J.P.; Zheng, Y.F. Development and properties of Ti-In binary alloys as dental biomaterials. Mater. Sci. Eng. C Mater. Biol. Appl. 2013, 33, 1601–1606. [Google Scholar] [CrossRef]
- Kim, J.W.; Hwang, M.J.; Han, M.K.; Kim, Y.G.; Song, H.J.; Park, Y.J. Effect of manganese on the microstructure, mechanical properties and corrosion behavior of titanium alloys. Mater. Chem. Phys. 2016, 180, 341–348. [Google Scholar] [CrossRef]
- Nakagawa, M.; Matono, Y.; Matsuya, S.; Udoh, K.; Ishikawa, K. The effect of Pt and Pd alloying additions on the corrosion behavior of titanium in fluoride-containing environments. Biomaterials 2005, 26, 2239–2246. [Google Scholar] [CrossRef]
- Osório, W.R.; Cremasco, A.; Andrade, P.N.; Garcia, A.; Caram, R. Electrochemical behavior of centrifuged cast and heat treated Ti–Cu alloys for medical applications. Electrochim. Acta 2010, 55, 759–770. [Google Scholar] [CrossRef]
- Cremasco, A.; Osório, W.R.; Freire, C.M.A.; Garcia, A.; Caram, R. Electrochemical corrosion behavior of a Ti–35Nb alloy for medical prostheses. Electrochim. Acta 2008, 53, 4867–4874. [Google Scholar] [CrossRef]
- Akimoto, T.; Ueno, T.; Tsutsumi, Y.; Doi, H.; Hanawa, T.; Wakabayashi, N. Evaluation of corrosion resistance of implant-use Ti-Zr binary alloys with a range of compositions. J. Biomed. Mater. Res. B Appl. Biomater. 2018, 106, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Rosalbino, F.; Delsant, S.; Borzone, G.; Scavino, G. Influence of noble metals alloying additions on the corrosion behaviour of titanium in a fluoride-containing environment. J. Mater. Sci: Mater. Med. 2012, 23, 1129–1137. [Google Scholar] [CrossRef]
- Niinomi, M. Recent research and development in titanium alloys for biomedical applications and healthcare goods. Sci. Technol. Adv. Mater. 2016, 4, 445–454. [Google Scholar] [CrossRef] [Green Version]
- Hsu, H.C.; Wu, S.C.; Hong, Y.S.; Ho, W.F. Mechanical properties and deformation behavior of as-cast Ti–Sn alloys. J. Alloy. Compd. 2009, 479, 390–394. [Google Scholar] [CrossRef]
- Hsu, H.C.; Lin, H.C.; Wu, S.C.; Hong, Y.S.; Ho, W.F. Microstructure and grindability of as-cast Ti–Sn alloys. J. Mater. Sci. 2010, 45, 1830–1836. [Google Scholar] [CrossRef]
- Azmat, A.; Tufail, M.; Chandio, A.D. Synthesis and Characterization of Ti-Sn Alloy for Orthopedic Application. Materials 2021, 14, 7660. [Google Scholar] [CrossRef]
- ASTM G106-89 (Reapproved 2010); Standard Practice for Verification of Algorithm and Equipment for Electrochemical Impedance Measurements. ASTM International: West Conshohocken, PA, USA, 2010.
- ASTM G5-94 (Reapproved 2011); Standard Reference Test Method for Making Potentiostatic and Potentiodynamic Anodic Polarization Measurements. ASTM International: West Conshohocken, PA, USA, 2011.
- Hsu, H.C.; Wu, S.C.; Hsu, S.K.; Li, C.T.; Ho, W.F. Effects of chromium addition on structure and mechanical properties of Ti-5Mo alloy. Mater Des. 2015, 65, 700–706. [Google Scholar] [CrossRef]
- Ho, W.F.; Wu, S.C.; Hsu, S.K.; Li, Y.C.; Hsu, H.C. Effects of molybdenum content on the structure and mechanical properties of as-cast Ti-10Zr-based alloys for biomedical applications. Mat. Sci. Eng. C-Mater. 2012, 32, 517–522. [Google Scholar] [CrossRef]
- Hsu, H.C.; Wu, S.C.; Hsu, S.K.; Kao, W.H.; Ho, W.F. Structure and mechanical properties of as-cast Ti-5Nb-based alloy with Mo addition. Mat. Sci. Eng. A-Struct. 2013, 579, 86–91. [Google Scholar] [CrossRef]
- Ho, W.F.; Ju, C.P.; Lin, J.H.C. Structure and properties of cast binary Ti-Mo alloys. Biomaterials 1999, 20, 2115–2122. [Google Scholar] [CrossRef]
- Park, K.H.; Hwang, M.J.; Song, H.J.; Park, Y.J. Electrochemical and mechanical properties of cast Ti-V alloys for dental applications. Int. J. Electrochem. Sci. 2016, 11, 5552–5563. [Google Scholar] [CrossRef]
- Fekry, A.M.; Ameer, M.A. Electrochemistry and Impedance Studies on Titanium and Magnesium Alloys in Ringer’s Solution. Int. J. Electrochem. Sci. 2011, 6, 1342–1354. [Google Scholar]
- Tamilselvi, S.; Raman, V.; Rajendran, N. Corrosion behaviour of Ti-6Al-7Nb and Ti-6Al-4V ELI alloys in the simulated body fluid solution by electrochemical impedance spectroscopy. Electrochim. Acta 2006, 52, 839–846. [Google Scholar] [CrossRef]
- Hwang, M.J.; Choi, H.R.; Kook, M.S.; Song, H.J.; Park, Y.J. Investigation of passivation and galvanic corrosion of Ti-Nb alloys and pure titanium. Mater. Corros. 2015, 66, 783–789. [Google Scholar] [CrossRef]
- Balaraju, J.N.; Selvi, V.E.; Grips, V.K.W.; Rajam, K.S. Electrochemical studies on electroless ternary and quaternary Ni–P based alloys. Electrochim. Acta 2006, 52, 1064–1074. [Google Scholar] [CrossRef]
- Zaveri, N.; McEwen, G.D.; Karpagavalli, R.; Zhou, A. Biocorrosion studies of TiO2 nanoparticle-coated Ti–6Al–4V implant in simulated biofluids. J. Nanoparticle Res. 2009, 12, 1609–1623. [Google Scholar] [CrossRef]
- Grosgogeat, B.; Reclaru, L.; Lissac, M.; Dalard, F. Measurement and evaluation of galvanic corrosion between titanium/Ti6Al4V implants and dental alloys by electrochemical techniques and auger spectrometry. Biomaterials 1999, 20, 933–941. [Google Scholar] [CrossRef]
Sample | Vickers Hardness (kgf/mm2) |
---|---|
cp-Ti | 154.44 ± 5.93 |
Ti-5Sn | 342.20 ± 61.28 |
Ti-10Sn | 334.80 ± 29.08 |
Ti-15Sn | 449.60 ± 73.59 |
Ti-20Sn | 442.00 ± 22.45 |
Sample | Solution | Outer Layer | Intermediate Layer | Inner Layer | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Rs (Ω) | R1 (kΩ) | CPE1 (µ S⋅sn1) | n1 | R2 (kΩ) | CPE2 (µ S⋅sn2) | n2 | R3 (kΩ) | CPE3 (µ S⋅sn3) | n3 | |
cp-Ti | 15.3 (1.5) | 2.53 (1.48) | 2367 (3611) | 0.76 (0.06) | 7.62 (6.14) | 4216 (3973) | 0.78 (0.07) | 2.55 (1.19) | 183 (271) | 0.80 (0.05) |
Ti-5Sn | 14.6 (4.8) | 11.05 (8.96) | 509 (756) | 0.88 (0.42) | 5.75 (2.39) | 977 (1476) | 0.87 (0.09) | 8.89 (6.43) | 117 (177) | 0.85 (0.07) |
Ti-10Sn | 21.1 (2.4) | 7.13 (9.07) | 269 (295) | 0.70 (0.03) | 9.92 (5.00) | 1580 (1360) | 0.76 (0.18) | 2.87 (1.87) | 15 (4) | 0.93 (0.06) |
Ti-15Sn | 14.8 (1.9) | 16.30 (12.60) | 570 (860) | 0.84 (0.10) | 9.41 (8.70) | 21 (12) | 0.91 (0.03) | 10.98 (5.92) | 1030 (1070) | 0.80 (0.12) |
Ti-20Sn | 19.9 (4.2) | 9.71 (7.39) | 81 (62) | 0.79 (0.13) | 6.28 (6.30) | 14 (2) | 0.95 (0.04) | 15.50 (3.77) | 710 (271) | 0.72 (0.08) |
Sample | Ecorr (mV) | Icorr (×10−6 A/cm2) | βa | βb | Rp (×kΩ) | Corrosion Rate (×10−2 mm/year) |
---|---|---|---|---|---|---|
cp-Ti | −574 ± 41 | 0.611 ± 0.171 | 0.267 ± 0.091 | 0.188 ± 0.179 | 78.7 ± 10.5 | 1.88 ± 0.53 |
Ti-5Sn | −530 ± 43 | 0.407 ± 0.066 | 0.199 ± 0.013 | 0.163 ± 0.021 | 97.8 ± 21.6 | 1.25 ± 0.20 |
Ti-10Sn | −577 ± 110 | 0.254 ± 0.171 | 0.187 ± 0.035 | 0.146 ± 0.027 | 193.9 ± 124 | 0.78 ± 0.53 |
Ti-15Sn | −519 ± 55 | 0.325 ± 0.149 | 0.186 ± 0.013 | 0.143 ± 0.021 | 123.8 ± 54 | 1.00 ± 0.46 |
Ti-20Sn | −723 ± 102 | 0.196 ± 0.103 | 0.173 ± 0.06 | 0.159 ± 0.021 | 223.0 ± 119 | 0.61 ± 0.32 |
Sample | Current Density (μA/cm2) | ||||||
---|---|---|---|---|---|---|---|
1 s | 5 s | 10 s | 60 s | 600 s | 1200 s | Integrate | |
Ti-5Sn | −1.65 ± 0.65 | −1.04 ± 0.36 | −0.78 ± 0.24 | −0.41 ± 0.08 | −0.23 ± 0.06 | −0.14 ± 0.03 | 297.72 ± 57.35 |
Ti-10Sn | −1.34 ± 0.29 | −0.86 ± 0.21 | −0.69 ± 0.18 | −0.40 ± 0.10 | −0.22 ± 0.09 | −0.17 ± 0.10 | 298.33 ± 106.82 |
Ti-15Sn | 1.10 ± 0.21 | 0.611 ± 0.17 | 0.40 ± 0.15 | 0.13 ± 0.07 | 0.08 ± 0.04 | 0.07 ± 0.03 | 121.33 ± 64.36 |
Ti-20Sn | −1.67 ± 0.46 | −1.09 ± 0.27 | −0.85 ± 0.18 | −0.46 ± 0.08 | −0.20 ± 0.08 | −0.14 ± 0.06 | 282.38 ± 91.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hwang, M.-J.; Song, H.-J.; Park, Y.-J. Microstructure and Electrochemical Characterization of Ti-Sn Binary Alloys for Dental Applications. Materials 2022, 15, 6897. https://doi.org/10.3390/ma15196897
Hwang M-J, Song H-J, Park Y-J. Microstructure and Electrochemical Characterization of Ti-Sn Binary Alloys for Dental Applications. Materials. 2022; 15(19):6897. https://doi.org/10.3390/ma15196897
Chicago/Turabian StyleHwang, Moon-Jin, Ho-Jun Song, and Yeong-Joon Park. 2022. "Microstructure and Electrochemical Characterization of Ti-Sn Binary Alloys for Dental Applications" Materials 15, no. 19: 6897. https://doi.org/10.3390/ma15196897
APA StyleHwang, M.-J., Song, H.-J., & Park, Y.-J. (2022). Microstructure and Electrochemical Characterization of Ti-Sn Binary Alloys for Dental Applications. Materials, 15(19), 6897. https://doi.org/10.3390/ma15196897