Mechanical Properties Evaluation of Three Different Materials for Implant Supported Overdenture: An In-Vitro Study
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
- 3D-printed implant-supported overdenture material specimens displayed the highest flexural strength while being significantly different from those made of conventional and high-impact heat-cured acrylic resin.
- Conventional and high-impact heat-cured acrylic resin denture base materials displayed comparable flexural strength and elastic modulus when used for the fabrication of implant-supported overdenture specimens.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gungor, H.; Gundogdu, M.; Yesil Duymus, Z. Investigation of the effect of different polishing techniques on the surface roughness of denture base and repair materials. J. Prosthet. Dent. 2014, 112, 1271–1277. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K.; Lassila, V.P.; Lappalainen, R. Wetting the repair surface with methyl methacrylate affects the transverse strength of repaired heat-polymerized resin. J. Prosthet. Dent. 1994, 72, 639–643. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Lassila, V.P.; Lappalainen, R. Evaluation of damage to removable dentures in two cities in Finland. Acta Odontol. Scand. 1993, 51, 363–369. [Google Scholar] [CrossRef] [PubMed]
- Vallittu, P.K.; Alakuijala, P.; Lassila, V.P.; Lappalainen, R. In vitro fatigue fracture of an acrylic resin-based partial denture: An exploratory study. J. Prosthet. Dent. 1994, 72, 289–295. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Lassila, V.P.; Lappalainen Niom, R. The effect of notch shape and self-cured acrylic resin repair on the fatigue resistance of an acrylic resin denture base. J. Oral Rehabil. 1996, 23, 108–113. [Google Scholar] [CrossRef]
- Vallittu, P.K.; Narva, K. Impact strength of a modified continuous glass fiber—Poly(methyl methacrylate). Int. J. Prosthodont. 1997, 10, 142–148. [Google Scholar] [PubMed]
- Meng, T.R.; Latta, M.A. Physical properties of four acrylic denture base resins. J. Contemp. Dent. Pract. 2005, 6, 93–100. [Google Scholar] [CrossRef] [Green Version]
- Abdulwahhab, S.S. High-impact strength acrylic denture base material processed by autoclave. J. Prosthodont. Res. 2013, 57, 288–293. [Google Scholar] [CrossRef]
- Uzun, G.; Hersek, N. Comparison of the fracture resistance of six denture base acrylic resins. J. Biomater. Appl. 2002, 17, 19–29. [Google Scholar] [CrossRef]
- Gad, M.M.; Fouda, S.M.; Al-Harbi, F.A.; Näpänkangas, R.; Raustia, A. PMMA denture base material enhancement: A review of fiber, filler, and nanofiller addition. Int. J. Nanomed. 2017, 12, 3801–3812. Available online: https://www.dovepress.com/pmma-denture-base-material-enhancement-a-review-of-fiber-filler-and-na-peer-reviewed-fulltext-article-IJN (accessed on 25 August 2022). [CrossRef]
- Sharan, S.; Kavitha, H.R.; Konde, H.; Kalahasti, D. Effect of chemical disinfectant on the transverse strength of heat-polymerized acrylic resins subjected to mechanical and chemical polishing: An in vitro study. J. Contemp. Dent. Pract. 2012, 13, 389–393. [Google Scholar] [PubMed]
- Naji, G.A.-H. Influence of Various Chemical Surface Treatments, Repair Materials, and Techniques on Transverse Strength of Thermoplastic Nylon Denture Base. Int. J. Dent. 2020, 2020, 8432143. [Google Scholar] [CrossRef] [PubMed]
- Li, P.; Krämer-Fernandez, P.; Klink, A.; Xu, Y.; Spintzyk, S. Repairability of a 3D printed denture base polymer: Effects of surface treatment and artificial aging on the shear bond strength. J. Mech. Behav. Biomed. Mater. 2021, 114, 104227. [Google Scholar] [CrossRef] [PubMed]
- Infante, L.; Yilmaz, B.; McGlumphy, E.; Finger, I. Fabricating complete dentures with CAD/CAM technology. J. Prosthet. Dent. 2014, 111, 351–355. [Google Scholar] [CrossRef]
- Prpić, V.; Schauperl, Z.; Ćatić, A.; Dulčić, N.; Čimić, S. Comparison of Mechanical Properties of 3D-Printed, CAD/CAM, and Conventional Denture Base Materials. J. Prosthodont. 2020, 29, 524–528. [Google Scholar] [CrossRef]
- Maeda, Y.; Minoura, M.; Tsutsumi, S.; Okada, M.; Nokubi, T. A CAD/CAM system for removable denture. Part I: Fabrication of complete dentures. Int. J. Prosthodont. 1994, 7, 17–21. [Google Scholar]
- Srinivasan, M.; Kalberer, N.; Maniewicz, S.; Müller, F. Implant overdentures retained by self-aligning stud-type attachments: A clinical report. J. Prosthet. Dent. 2020, 123, 6–14. [Google Scholar] [CrossRef] [Green Version]
- Feine, J.S.; Carlsson, G.E.; Awad, M.A.; Chehade, A.; Duncan, W.J.; Gizani, S.; Head, T.; Lund, J.P.; MacEntee, M.; Mericske-Stern, R.; et al. The McGill Consensus Statement on Overdentures. Montreal, Quebec, Canada. May 24–25, 2002. Int. J. Prosthodont. 2002, 15, 413–414. [Google Scholar]
- Seo, R.S.; Murata, H.; Hong, G.; Vergani, C.E.; Hamada, T. Influence of thermal and mechanical stresses on the strength of intact and relined denture bases. J. Prosthet. Dent. 2006, 96, 59–67. [Google Scholar] [CrossRef]
- Tallarico, M.; Cervino, G.; Montanari, M.; Scrascia, R.; Ferrari, E.; Casucci, A.; Xhanari, E.; Lupi, S.M.; Meloni, S.; Ceruso, F.M.; et al. OT-Equator® Attachments Comparison for Retaining an Early Loaded Implant Overdenture on Two or Three Implants: 1 Year RCT Preliminary Data. Appl. Sci. 2021, 11, 8601. [Google Scholar] [CrossRef]
- Montanari, M.; Scrascia, R.; Cervino, G.; Pasi, M.; Ferrari, E.; Xhanari, E.; Koshovari, A.; Tallarico, M. A One-Year, Multicenter, Retrospective Evaluation of Narrow and Low-Profile Abutments Used to Rehabilitate Complete Edentulous Lower Arches: The OT Bridge Concept. Prosthesis 2020, 2, 352–361. [Google Scholar] [CrossRef]
- The Glossary of Prosthodontic Terms: Ninth Edition. J. Prosthet. Dent. 2017, 117, e1–e105. [CrossRef] [PubMed]
- Tallarico, M.; Ortensi, L.; Martinolli, M.; Casucci, A.; Ferrari, E.; Malaguti, G.; Montanari, M.; Scrascia, R.; Vaccaro, G.; Venezia, P.; et al. Multicenter Retrospective Analysis of Implant Overdentures Delivered with Different Design and Attachment Systems: Results Between One and 17 Years of Follow-Up. Dent. J. 2018, 6, 71. [Google Scholar] [CrossRef] [Green Version]
- Gonda, T.; Maeda, Y.; Walton, J.N.; MacEntee, M.I. Fracture incidence in mandibular overdentures retained by one or two implants. J. Prosthet. Dent. 2010, 103, 178–181. [Google Scholar] [CrossRef]
- Ozkir, S.E.; Yilmaz, B. Effect of different housing retaining materials on the flexural strength of an acrylic resin overdenture base. J. Prosthet. Dent. 2017, 118, 500–503. [Google Scholar] [CrossRef]
- Nedir, R.; Bischof, M.; Szmukler-Moncler, S.; Belser, U.C.; Samson, J. Prosthetic complications with dental implants: From an up-to-8-year experience in private practice. Int. J. Oral Maxillofac. Implant 2006, 21, 919–928. [Google Scholar]
- Chhabra, A.; Chhabra, N.; Jain, A.; Kabi, D. Overdenture Prostheses with Metal Copings: A Retrospective Analysis of Survival and Prosthodontic Complications. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2019, 28, 876–882. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Perea-Lowery, L.; Gibreel, M.; Vallittu, P.K.; Lassila, L.V. 3D-Printed vs. Heat-Polymerizing and Autopolymerizing Denture Base Acrylic Resins. Mater. Basel Switz. 2021, 14, 5781. [Google Scholar] [CrossRef] [PubMed]
- Fiore, A.D.; Meneghello, R.; Brun, P.; Rosso, S.; Gattazzo, A.; Stellini, E.; Yilmaz, B. Comparison of the flexural and surface properties of milled, 3D-printed, and heat polymerized PMMA resins for denture bases: An in vitro study. J. Prosthodont. Res. 2022, 66, 502–508. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Al Haj Ebrahim, A.A.; Baba, N.Z. A Comparison of the Surface and Mechanical Properties of 3D Printable Denture-Base Resin Material and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2022. [Google Scholar] [CrossRef]
- Gibreel, M.; Lassila, L.V.J.; Närhi, T.O.; Perea-Lowery, L.; Vallittu, P.K. Load-bearing capacity of simulated Locator-retained overdenture system. J. Prosthet. Dent. 2018, 120, 558–564. [Google Scholar] [CrossRef] [PubMed]
- El Aziz, M.; El Megid Tella, E. Fully digital workflow for reinforced mandibular implant overdenture—A novel method. J. Indian Prosthodont. Soc. 2022, 22, 205–209. [Google Scholar] [CrossRef]
- ELsyad, M.A.; Fathe Mahanna, F.; Samir Khirallah, A.; Ali Habib, A. Clinical denture base deformation with different attachments used to stabilize implant overdentures: A crossover study. Clin. Oral Implants Res. 2020, 31, 162–172. [Google Scholar] [CrossRef] [PubMed]
- Machado, A.L.; Puckett, A.D.; Breeding, L.C.; Wady, A.F.; Vergani, C.E. Effect of thermocycling on the flexural and impact strength of urethane-based and high-impact denture base resins. Gerodontology 2012, 29, e318–e323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yoshida, K.; Takahashi, Y.; Sasaki, H.; Hamanaka, I.; Kawaguchi, T. Flexural strengths of reinforced denture base resins subjected to long-term water immersion. Acta Biomater. Odontol. Scand. 2016, 2, 20–24. [Google Scholar] [CrossRef]
- Al-Dwairi, Z.N.; Tahboub, K.Y.; Baba, N.Z.; Goodacre, C.J.; Özcan, M. A Comparison of the Surface Properties of CAD/CAM and Conventional Polymethylmethacrylate (PMMA). J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2019, 28, 452–457. [Google Scholar] [CrossRef] [Green Version]
- Gad, M.M.; Fouda, S.M.; Abualsaud, R.; Alshahrani, F.A.; Al-Thobity, A.M.; Khan, S.Q.; Akhtar, S.; Msc, I.S.A.; Helal, M.A.; Al-Harbi, F.A.; et al. Strength and Surface Properties of a 3D-Printed Denture Base Polymer. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2022, 31, 412–418. [Google Scholar] [CrossRef]
- Shim, J.S.; Kim, J.-E.; Jeong, S.H.; Choi, Y.J.; Ryu, J.J. Printing accuracy, mechanical properties, surface characteristics, and microbial adhesion of 3D-printed resins with various printing orientations. J. Prosthet. Dent. 2020, 124, 468–475. [Google Scholar] [CrossRef]
- Lee, J.; Belles, D.; Gonzalez, M.; Kiat-Amnuay, S.; Dugarte, A.; Ontiveros, J. Impact strength of 3D printed and conventional heat-cured and cold-cured denture base acrylics. Int. J. Prosthodont. 2022, 35, 240–244. [Google Scholar] [CrossRef]
- Sideridou, I.; Tserki, V.; Papanastasiou, G. Effect of chemical structure on degree of conversion in light-cured dimethacrylate-based dental resins. Biomaterials 2002, 23, 1819–1829. [Google Scholar] [CrossRef]
- Li, P.; Lambart, A.-L.; Stawarczyk, B.; Reymus, M.; Spintzyk, S. Postpolymerization of a 3D-printed denture base polymer: Impact of post-curing methods on surface characteristics, flexural strength, and cytotoxicity. J. Dent. 2021, 115, 103856. [Google Scholar] [CrossRef] [PubMed]
- Goodacre, B.J.; Goodacre, C.J. Additive Manufacturing for Complete Denture Fabrication: A Narrative Review. J. Prosthodont. Off. J. Am. Coll. Prosthodont. 2022, 31, 47–51. [Google Scholar] [CrossRef] [PubMed]
- Suominen, J.M.; Frankberg, E.J.; Vallittu, P.K.; Levänen, E.; Vihinen, J.; Vastamäki, T.; Kari, R.; Lassila, L.V.J. Three-dimensional printing of zirconia: Characterization of early stage material properties. Biomater. Investig. Dent. 2019, 6, 23–31. [Google Scholar] [CrossRef]
- Domingo, K.B.; Burgess, J.O.; Litaker, M.S.; McCracken, M.S. Strength comparison of four techniques to secure implant attachment housings to complete dentures. J. Prosthet. Dent. 2013, 110, 8–13. [Google Scholar] [CrossRef]
- Sarac, Y.S.; Sarac, D.; Kulunk, T.; Kulunk, S. The effect of chemical surface treatments of different denture base resins on the shear bond strength of denture repair. J. Prosthet. Dent. 2005, 94, 259–266. [Google Scholar] [CrossRef]
Material | Description | Manufacturer | Processing Method | Chemical Composition. |
---|---|---|---|---|
Paladon 65 | Heat-cured acrylic resin | Kulzer GmbH, Hanau, Germany | 20 min at 90 °C, then cool down slowly in the water bath. | Liquid: methylmethacrylate (>90%); tetramethylene dimethacrylate (≥1–≤5%); p-Mentha-1,4-diene (<0.25%) Powder: (based on methacrylate copolymonomers) methylmethacrylate (≥1–≤5%); dibenzoyl peroxide (≥0.25–<1%) |
Lucitone 199 | Heat-cured high-impact acrylic resin | Dentsply Intl, York, Pa | 90 min at 70 °C and 30 min in boiling water | Powder: PMMA (with rubber molecules) 95–100% Liquid: methyl methacrylate (80–100%), ethylene dimethacrylate (1–20%) |
FREEPRINT denture | Light curing resin for 3D-printing | Detax, Ettlingen, Germany | 3D printing in a DLP printer 385 nm, post-curing in a light chamber for 30 min at 60 °C | MMA-free Mixture of acrylic/methacrylic resins with auxiliary matters |
Palapress | Autopolymerizing resin (pick up material) | Kulzer GmbH, Hanau, Germany | 15 min at 55 °C and 300 KPa | Liquid: methylmethacrylate (>90%); tetramethylene dimethacrylate (≥1–≤5%); maleic acid (<0.1%); 2-Hydroxy-4-methoxy benzophenone (<0.25%); mequinol (<1%); Quaternary ammonium compounds, tri-C8-10-alkylmethyl, chlorides (≥0.025–<0.25%) Powder: (based on methacrylate copolymers) dibenzoyl peroxide (≥1–<2.5%); methyl methacrylate (≥1–≤5%); 1-Benzyl-5-phenylbarbitursäure (≥0–≤5%) |
ANOVA | ||||||
---|---|---|---|---|---|---|
Sum of Squares | df (Degree of Freedom) | Mean Square | F | p Value | ||
Flexural strength | Between groups | 2056.427 | 2 | 1028.214 | 12,280 | <0.001 |
Within groups | 2511.834 | 30 | 83.728 | |||
Total | 4568.261 | 32 | ||||
Elastic modulus | Between groups | 142,880.893 | 2 | 71,440.446 | 0.819 | 0.451 |
Within groups | 2,618,450.946 | 30 | 87,281.698 | |||
Total | 2,761,331.839 | 32 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibreel, M.; Perea-Lowery, L.; Lassila, L.; Vallittu, P.K. Mechanical Properties Evaluation of Three Different Materials for Implant Supported Overdenture: An In-Vitro Study. Materials 2022, 15, 6858. https://doi.org/10.3390/ma15196858
Gibreel M, Perea-Lowery L, Lassila L, Vallittu PK. Mechanical Properties Evaluation of Three Different Materials for Implant Supported Overdenture: An In-Vitro Study. Materials. 2022; 15(19):6858. https://doi.org/10.3390/ma15196858
Chicago/Turabian StyleGibreel, Mona, Leila Perea-Lowery, Lippo Lassila, and Pekka K. Vallittu. 2022. "Mechanical Properties Evaluation of Three Different Materials for Implant Supported Overdenture: An In-Vitro Study" Materials 15, no. 19: 6858. https://doi.org/10.3390/ma15196858
APA StyleGibreel, M., Perea-Lowery, L., Lassila, L., & Vallittu, P. K. (2022). Mechanical Properties Evaluation of Three Different Materials for Implant Supported Overdenture: An In-Vitro Study. Materials, 15(19), 6858. https://doi.org/10.3390/ma15196858