Advanced Dye Sorbents from Combined Stereolithography 3D Printing and Alkali Activation of Pharmaceutical Glass Waste
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Reagents
2.2. Synthesis and Procedures
2.3. Material Characterization
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barfod, G.H.; Freestone, I.C.; Jackson-Tal, R.E.; Lichtenberger, A.; Raja, R. Exotic glass types and the intensity of recycling in the northwest Quarter of Gerasa (Jerash, Jordan). J. Archaeol. Sci. 2022, 140, 105546. [Google Scholar] [CrossRef]
- Chong, K.Y.; Chia, C.H.; Zakaria, S.; Sajab, M.S. Vaterite calcium carbonate for the adsorption of Congo red from aqueous solutions. J. Environ. Chem. Eng. 2014, 2, 2156–2161. [Google Scholar] [CrossRef]
- Dhir, R.K.; de Brito, J.; Lynn, C.J.; Silva, R.V. Alternative Applications. In Sustainable Construction Materials; Elsevier: Amsterdam, The Netherlands, 2018; pp. 239–276. [Google Scholar]
- Toniolo, N.; Rincon, A.; Avadhut, Y.; Hartmann, M.; Bernardo, E.; Boccaccini, A. Novel geopolymers incorporating red mud and waste glass cullet. Mater. Lett. 2018, 219, 152–154. [Google Scholar] [CrossRef]
- Mahmoud, M.; Kraxner, J.; Kaňková, H.; Hujová, M.; Chen, S.; Galusek, D.; Bernardo, E. Porous Glass Microspheres from Alkali-Activated Fiber Glass Waste. Materials 2022, 15, 1043. [Google Scholar] [CrossRef] [PubMed]
- Ling, T.-C.; Poon, C.-S.; Wong, H.-W. Management and recycling of waste glass in concrete products: Current situations in Hong Kong. Resour. Conserv. Recycl. 2013, 70, 25–31. [Google Scholar] [CrossRef]
- Amiri, S.T.; Nazir, R. Experimental Study of Geotechnical Characteristics of Crushed Glass Mixed with Kaolinite Soil. Int. J. GEOMATE 2018, 14, 170–176. [Google Scholar] [CrossRef]
- Srinivasan, C.; Ma, Y.; Liu, Y.; Wang, Y.; Hengst, L.; Liu, X.; Toth, R.; Rodriguez, J.; Mohammad, A.; Bandaranayake, B.M.; et al. Quality attributes and evaluation of pharmaceutical glass containers for parenterals. Int. J. Pharm. 2019, 568, 118510. [Google Scholar] [CrossRef]
- Zhao, J.; LaValley, V.; Mangiagalli, P.; Wright, J.M.; Bankston, T.E. Glass delamination: A comparison of the inner surface performance of vials and pre-filled syringes. AAPS Pharm. Sci. Tech. 2014, 15, 1398–1409. [Google Scholar] [CrossRef] [Green Version]
- Sacha, G.; Rogers, J.A.; Miller, R.L. Pre-filled syringes: A review of the history, manufacturing and challenges. Pharm. Dev. Technol. 2015, 20, 1–11. [Google Scholar] [CrossRef]
- Hao, G.; Wang, H.; Lai, X.; Sun, F.; You, J.; Huang, F.; Liu, Y.; Huang, L.; Xin, L.; Song, X.; et al. Azithromycin “ghost peak”: A solution degradation product of azithromycin via leaching from borosilicate glass volumetric flasks and vials. J. Pharm. Biomed. Anal. 2021, 204, 114248. [Google Scholar] [CrossRef]
- Lu, J.; Cong, X.; Lu, Z. Influence of magnesia on sinter-crystallization, phase composition and flexural strength of sintered glass-ceramics from waste materials. Mater. Chem. Phys. 2016, 174, 143–149. [Google Scholar] [CrossRef]
- Kozłowski, M.; Khater, G.; Olesik, P.; Mahmoud, M. Preparation and characterization of lightweight glass–ceramics based on industrial wastes. J. Aust. Ceram. Soc. 2019, 56, 11–20. [Google Scholar] [CrossRef]
- Bernardo, E.; Scarinci, G. Sintering behaviour and mechanical properties of Al2O3 platelet-reinforced glass matrix composites obtained by powder technology. Ceram. Int. 2004, 30, 785–791. [Google Scholar] [CrossRef]
- Ramteke, D.D.; Hujova, M.; Kraxner, J.; Galusek, D.; Romero, A.R.; Falcone, R.; Bernardo, E. Up-cycling of ‘unrecyclable’ glasses in glass-based foams by weak alkali-activation, gel casting and low-temperature sintering. J. Clean. Prod. 2021, 278, 123985. [Google Scholar] [CrossRef]
- Bai, C.; Li, H.; Bernardo, E.; Colombo, P. Waste-to-resource preparation of glass-containing foams from geopolymers. Ceram. Int. 2019, 45, 7196–7202. [Google Scholar] [CrossRef]
- Romero, A.R.; Tamburini, S.; Taveri, G.; Toušek, J.; Dlouhy, I.; Bernardo, E. Extension of the ‘Inorganic Gel Casting’ Process to the Manufacturing of Boro-Alumino-Silicate Glass Foams. Materials 2018, 11, 2545. [Google Scholar] [CrossRef] [Green Version]
- Xu, H.; Zhu, S.; Lu, K.; Jia, H.; Xia, M.; Wang, F. Preparation of hierarchically floral ZIF-8 derived carbon@polyaniline@Ni/Al layered double hydroxides composite with outstanding removal phenomenon for saccharin. Chem. Eng. J. 2022, 450, 138127. [Google Scholar] [CrossRef]
- Erasmus, E.P.; Johnson, O.; Sigalas, I.; Massera, J. Effects of Sintering Temperature on Crystallization and Fabrication of Porous Bioactive Glass Scaffolds for Bone Regeneration. Sci. Rep. 2017, 7, 6046. [Google Scholar] [CrossRef] [Green Version]
- Dasan, A.; Ożóg, P.; Kraxner, J.; Elsayed, H.; Colusso, E.; Grigolato, L.; Savio, G.; Galusek, D.; Bernardo, E. Up-Cycling of LCD Glass by Additive Manufacturing of Porous Translucent Glass Scaffolds. Materials 2021, 14, 5083. [Google Scholar] [CrossRef]
- Jin, H.; Zhang, Y.; Zhang, X.; Chang, M.; Li, C.; Lu, X.; Wang, Q. 3D printed geopolymer adsorption sieve for removal of methylene blue and adsorption mechanism. Colloids Surf. A Physicochem. Eng. Asp. 2022, 648, 129235. [Google Scholar] [CrossRef]
- Bhuyan, M.A.H.; Gebre, R.K.; Finnilä, M.A.J.; Illikainen, M.; Luukkonen, T. Preparation of filter by alkali activation of blast furnace slag and its application for dye removal. J. Environ. Chem. Eng. 2022, 10, 107051. [Google Scholar] [CrossRef]
- Kaya-Özkiper, K.; Uzun, A.; Soyer-Uzun, S. A novel alkali activated magnesium silicate as an effective and mechanically strong adsorbent for methylene blue removal. J. Hazard Mater. 2022, 424 Pt A, 127256. [Google Scholar] [CrossRef]
- García-Carvajal, C.; Villarroel-Rocha, J.; de Souza, V.C.; Sapag, K. Development of ceramic honeycomb monolith from natural zeolite tested as adsorbent to remove methylene blue in aqueous media. Environ. Sci. Pollut. Res. Int. 2022. [Google Scholar] [CrossRef]
- Buciuman, F.C.; Kraushaar-Czarnetzki, B. Ceramic Foam Monoliths as Catalyst Carriers. 1. Adjustment and Description of the Morphology. Ind. Eng. Chem. Res. 2003, 42, 1863–1869. [Google Scholar] [CrossRef]
- Avila, P.; Montes, M.; Miró, E.E. Monolithic reactors for environmental applications. Chem. Eng. J. 2005, 109, 11–36. [Google Scholar] [CrossRef]
- Gatica, J.M.; Gómez, D.M.; Harti, S.; Vidal, H. Clay honeycomb monoliths for water purification: Modulating methylene blue adsorption through controlled activation via natural coal templating. Appl. Surf. Sci. 2013, 277, 242–248. [Google Scholar] [CrossRef]
- Jo, W.; Yoon, B.J.; Lee, H.; Moon, M.-W. 3D Printed Hierarchical Gyroid Structure with Embedded Photocatalyst TiO2 Nanoparticles. 3D Print. Addit. Manuf. 2017, 4, 222–230. [Google Scholar] [CrossRef]
- Savio, G.; Meneghello, R.; Concheri, G. Design of variable thickness triply periodic surfaces for additive manufacturing. Prog. Addit. Manuf. 2019, 4, 281–290. [Google Scholar] [CrossRef]
- Jiang, C.-P.; Meizinta, T. Development of LCD-based additive manufacturing system for biomedical application. In Proceedings of the 2016 International Conference on Artificial Intelligence and Robotics, Kitakyushu, Japan, 13–15 July 2016; pp. 1–6. [Google Scholar]
- Zhu, N.; Hou, Y.; Yang, W.; Wen, G.; Zhong, C.; Wang, D.; Liu, Y.; Zhang, L. Preparation of complex SiOC ceramics by a novel photocurable precursor with liquid crystal display (LCD) 3D printing technology. J. Eur. Ceram. Soc. 2022, 42, 3204–3212. [Google Scholar] [CrossRef]
- Qian, C.; Hu, K.; Li, J.; Li, P.; Lu, Z. The effect of light scattering in stereolithography ceramic manufacturing. J. Eur. Ceram. Soc. 2021, 41, 7141–7154. [Google Scholar] [CrossRef]
- Elsayed, H.; Picicco, M.; Dasan, A.; Kraxner, J.; Galusek, D.; Bernardo, E. Glass powders and reactive silicone binder: Interactions and application to additive manufacturing of bioactive glass-ceramic scaffolds. Ceram. Int. 2019, 45, 13740–13746. [Google Scholar] [CrossRef]
- Zhuravlev, L.T. The surface chemistry of amorphous silica. Zhuravlev model. Colloids Surf. A Physicochem. Eng. Asp. 2000, 173, 1–38. [Google Scholar] [CrossRef] [Green Version]
- Samad, S.A.; Arafat, A.; Ferrari, R.; Gomes, R.L.; Lester, E.; Ahmed, I. Adsorption studies and effect of heat treatment on porous glass microspheres. Int. J. Appl. Glass Sci. 2022, 13, 63–81. [Google Scholar] [CrossRef]
- An, Y.; Zheng, H.; Yu, Z.; Sun, Y.; Wang, Y.; Zhao, C.; Ding, W. Functioned hollow glass microsphere as a self-floating adsorbent: Rapid and high-efficient removal of anionic dye. Hazard Mater. 2020, 381, 120971. [Google Scholar] [CrossRef] [PubMed]
- Chakrabarti, S.; Dutta, B.K. On the adsorption and diffusion of Methylene Blue in glass fibers. J. Colloid Interface Sci. 2005, 286, 807–811. [Google Scholar] [CrossRef]
- Kinoshita, H.; Sasaki, K.; Yasui, K.; Miyakawa, Y.; Yuji, T.; Misawa, N.; Mungkung, N. Dye Adsorption Mechanism of Glass Fiber-Reinforced Plastic/Clay Ceramics and Influencing Factors. Polymers 2021, 18, 3172. [Google Scholar] [CrossRef]
- Ertuş, E.B.; Vakifahmetoglu, C.; Öztürk, A. Enhanced methylene blue removal efficiency of TiO2 embedded porous glass. J. Eur. Ceram. Soc. 2021, 41, 1530–1536. [Google Scholar] [CrossRef]
- Li, F.; Wu, X.; Ma, S.; Xu, Z.; Liu, W.; Liu, F. Adsorption and Desorption Mechanisms of Methylene Blue Removal with Iron-Oxide Coated Porous Ceramic Filter. J. Water Resour. Prot. 2009, 1, 418. [Google Scholar] [CrossRef] [Green Version]
- Dung, H.T.; Chinh, N.T.; Lu, L.T.; Hoang, T. Methylene blue adsorption of chitosan/nano-TiO2 films prepared by 3D printing method. Vietnam. J. Chem. 2021, 59, 319–325. [Google Scholar]
- Zhang, Y.; Chen, Y.; Jiang, Y.; Sui, G. Self-Thickening and Self-Strengthening 3D Printing Magnetic Cellulose-Based Aerogel for Adsorption and Recovery of Methylene Blue. Adv. Sustain. Syst. 2022, 6, 2100329. [Google Scholar] [CrossRef]
- Liu, Z.; Zhou, X.; Liu, C.J. N-doped porous carbon material prepared via direct ink writing for the removal of methylene blue. Diam. Relat. Mater. 2019, 95, 121–126. [Google Scholar] [CrossRef]
Samples | Shrinkage (%) | Geometrical Density (g/cm3) | Apparent Density (g/cm3) | True Density (g/cm3) | Open Porosity (%) | Closed Porosity (%) | Total Porosity (%) | BET (m2/g) | Compressive Strength (MPa) |
---|---|---|---|---|---|---|---|---|---|
Green | - | 0.54 ± 0.02 | 1.6 ± 0.01 | - | 66 ± 1 | - | - | - | - |
Glass 680 °C | 15 ± 2 | 0.54 ± 0.02 | 2.28 ± 0.03 | 2.38 ± 0.02 | 76 ± 2 | 2 ± 1 | 78 ± 1 | 0.7 | 0.8 ± 0.2 |
Glass 680 °C Activated | 0.56 ± 0.01 | 2.31 ± 0.03 | 2.41 ± 0.02 | 76 ± 2 | 1 ± 1 | 77 ± 1 | 1.1 | 0.7 ± 0.1 | |
Glass 730 °C | 28 ± 3 | 0.84 ± 0.03 | 2.24 ± 0.02 | 2.33 ± 0.03 | 62 ± 1 | 2 ± 1 | 64 ± 1 | 0.6 | 4.0 ± 0.2 |
Glass 730 °C-Activated | 0.92 ± 0.02 | 2.26 ± 0.03 | 2.46 ± 0.05 | 60 ± 1 | 3 ± 1 | 63 ± 1 | 0.7 | 4.2 ± 0.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mahmoud, M.; Kraxner, J.; Elsayed, H.; Galusek, D.; Bernardo, E. Advanced Dye Sorbents from Combined Stereolithography 3D Printing and Alkali Activation of Pharmaceutical Glass Waste. Materials 2022, 15, 6823. https://doi.org/10.3390/ma15196823
Mahmoud M, Kraxner J, Elsayed H, Galusek D, Bernardo E. Advanced Dye Sorbents from Combined Stereolithography 3D Printing and Alkali Activation of Pharmaceutical Glass Waste. Materials. 2022; 15(19):6823. https://doi.org/10.3390/ma15196823
Chicago/Turabian StyleMahmoud, Mokhtar, Jozef Kraxner, Hamada Elsayed, Dušan Galusek, and Enrico Bernardo. 2022. "Advanced Dye Sorbents from Combined Stereolithography 3D Printing and Alkali Activation of Pharmaceutical Glass Waste" Materials 15, no. 19: 6823. https://doi.org/10.3390/ma15196823