Thermoelectric Properties of Co-Substituted Al–Pd–Re Icosahedral Quasicrystals
Abstract
1. Introduction
2. Methods and Materials
3. Results and Discussion
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Freer, R.; Ekren, D.; Ghosh, T.; Biswas, K.; Qiu, P.; Wan, S.; Chen, L.; Han, S.; Fu, C.; Zhu, T.; et al. Key properties of inorganic thermoelectric materials-tables (version 1). J. Phys. Energy 2022, 4, 022002. [Google Scholar] [CrossRef]
- Shi, X.-L.; Zou, J.; Chen, Z.-G. Advanced Thermoelectric Design: From Materials and Structures to Devices. Chem. Rev. 2020, 120, 7399–7515. [Google Scholar] [CrossRef]
- Zevalkink, A.; Smiadak, D.M.; Blackburn, J.L.; Ferguson, A.J.; Chabinyc, M.L.; Delaire, O.; Wang, J.; Kovnir, K.; Marin, J.; Schelhas, L.T.; et al. A practical field guide to thermoelectrics: Fundamentals, synthesis, and characterization. Appl. Phys. Rev. 2018, 5, 021303. [Google Scholar] [CrossRef]
- Beretta, D.; Neophytou, N.; Hodges, J.M.; Kanatzidis, M.G.; Narducci, D.; Martin-Gonzalez, M.; Beekman, M.; Balke, B.; Cerretti, G.; Tremel, W.; et al. Thermoelectrics: From history, a window to the future. Mater. Sci. Eng. Rep. 2019, 138, 210–255. [Google Scholar] [CrossRef]
- Xin, J.; Tang, Y.; Liu, Y.; Zhao, X.; Pan, H.; Zhu, T. Valleytronics in thermoelectric materials. NPJ Quantum Mater. 2018, 3, 9. [Google Scholar] [CrossRef]
- Kanatzidis, M.G. Nanostructured thermoelectrics: The new paradigm? Chem. Mater. 2010, 22, 648–659. [Google Scholar] [CrossRef]
- Prauzek, M.; Konecny, J.; Borova, M.; Janosova, K.; Hlavica, J.; Musilek, P. Energy Harvesting Sources, Storage Devices and System Topologies for Environmental Wireless Sensor Networks: A Review. Sensors 2018, 18, 2446. [Google Scholar] [CrossRef]
- Takagiwa, Y.; Ikeda, T.; Kojima, H. Earth-Abundant Fe-Al-Si Thermoelectric (FAST) Materials: From Fundamental Materials Research to Module Development. ACS Appl. Mater. Interfaces 2020, 12, 48804–48810. [Google Scholar] [CrossRef] [PubMed]
- Takagiwa, Y.; Hou, Z.; Tsuda, K.; Ikeda, T.; Kojima, H. Fe–Al–Si Thermoelectric (FAST) Materials and Modules: Diffusion-Couple and Machine-Learning Assisted Materials Development. ACS Appl. Mater. Interfaces 2021, 13, 53346–53354. [Google Scholar] [CrossRef]
- Dolinšek, J. Electrical and thermal transport properties of icosahedral and decagonal quasicrystals. Chem. Soc. Rev. 2012, 41, 6730–6744. [Google Scholar] [CrossRef]
- Dubois, J.-M. Properties and applications of quasicrystals and complex metallic alloys. Chem. Soc. Rev. 2012, 41, 6760–6777. [Google Scholar] [CrossRef] [PubMed]
- Singh, A. Tailoring microstructure of Mg–Zn–Y alloys with quasicrystal and related phases for high mechanical strength. Sci. Technol. Adv. Mater. 2014, 15, 044803. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Takeuchi, T. Very large thermal rectification in bulk composites consisting partly of icosahedral quasicrystals. Sci. Technol. Adv. Mater. 2014, 15, 064801. [Google Scholar] [CrossRef] [PubMed]
- Takagiwa, Y.; Kimura, K. Metallic-covalent bonding conversion and thermoelectric properties of Al-based icosahedral quasicrystals and approximants. Sci. Technol. Adv. Mater. 2014, 15, 044802. [Google Scholar] [CrossRef] [PubMed]
- Maćia, E. Thermoelectric figure of merit of AlPdRe icosahedral quasicrystals: Composition-dependent effects. Phys. Rev. B 2004, 69, 184202. [Google Scholar] [CrossRef]
- Takagiwa, Y.; Kimura, K. Reinvestigation of the Thermoelectric Properties of Fe-Substituted Icosahedral Al–Pd–Re Quasicrytals. Phys. Status Solidi A 2022, 219, 2200073. [Google Scholar] [CrossRef]
- Trambly de Laissardière, G.; Nguyen-Manh, N.; Mayou, D. Electronic structure of complex Hume-Rothery phases and quasicrystals in transition metal aluminides. Prog. Mater. Sci. 2005, 50, 679–788. [Google Scholar] [CrossRef]
- Steurer, W. Why are quasicrystals quasiperiodic? Chem. Soc. Rev. 2012, 41, 6719–6729. [Google Scholar] [CrossRef]
- Takagiwa, Y.; Kamimura, T.; Okada, J.T.; Kimura, K. Thermoelectric Properties of Icosahedral Al–Pd–(Mn or Re) Quasicrystals: Improvement of the ZT Value by Ga Substitution for Al Atoms. J. Electron. Mater. 2010, 39, 1885–1889. [Google Scholar] [CrossRef]
- Takagiwa, Y.; Kamimura, T.; Hosoi, S.; Okada, J.T.; Kimura, K. Thermoelectric properties of polygrained icosahedral Al71−xGaxPd20Mn9 (x = 0, 2, 3, 4) quasicrystals. J. Appl. Phys. 2008, 104, 073721. [Google Scholar] [CrossRef]
- Iwasaki, Y.; Kashimura, T.; Kitahara, K.; Kimura, K. Possibility of Semiconducting Electronic Structure on AlPdCo 1/1 Cubic Quasicrystalline Approximant. Mater. Trans. 2021, 62, 317–320. [Google Scholar] [CrossRef]
- Takagiwa, Y.; Kamimura, T.; Hosoi, S.; Okada, J.T.; Kimura, K. Thermoelectric properties of Al–Pd–Re quasicrystal sintered by Spark Plasma Sintering (SPS): Effect of improvement of microstructure. Z. Kristallogr. 2009, 224, 79–83. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Anderson, O.L. A simplified method for calculating the debye temperature from elastic constants. J. Phys. Chem. Solids 1963, 24, 909–917. [Google Scholar] [CrossRef]
- Shiota, Y.; Muta, H.; Yamamoto, K.; Ohishi, Y.; Kurosaki, K.; Yamanaka, S. A new semiconductor Al2Fe3Si3 with complex crystal structure. Intermetallics 2017, 89, 51–56. [Google Scholar] [CrossRef]
- Stadnik, Z.M.; Zhang, G.W.; Tsai, A.-P.; Inoue, A. Electronic structure of icosahedral Al65Cu20Ru15 studied by photoemission spectroscopy. Phys. Rev. B 1995, 81, 4023–4041. [Google Scholar] [CrossRef] [PubMed]
- Nagata, T.; Kirihara, K.; Kimura, K. Effect of Ru substitution for Re on the thermoelectric properties of AlPdRe icosahedral quasicrystals. J. Appl. Phys. 2003, 94, 6560–6565. [Google Scholar] [CrossRef]
- Okada, J.T.; Hamamatsu, T.; Hosoi, S.; Nagata, T.; Kimura, K. Improvement of thermoelectric properties of icosahedral AlPdRe quasicrystals by Fe substitution for Re. J. Appl. Phys. 2007, 101, 103702. [Google Scholar] [CrossRef]
- Mizutani, U.; Sato, H.; Inukai, M.; Zijlstra, E.S. e/a determination for 4d- and 5d-transition metal elements and their intermetallic compounds with Mg, Al, Zn, Cd and In. Philos. Mag. 2013, 93, 3353–3390. [Google Scholar] [CrossRef]
- Takeuchi, T. Unusual Increase of Electron Thermal Conductivity Caused by a Pseudogap at the Fermi Level. J. Electron. Mater. 2009, 38, 1354–1359. [Google Scholar] [CrossRef]
- Maciá, E.; Rodríguez-Oliveros, R. Theoretical assessment on the validity of the Wiedemann-Franz law for icosahedral quasicrystals. Phys. Rev. B 2007, 75, 104210. [Google Scholar] [CrossRef]
- Kim, H.-S.; Gibbs, Z.M.; Tang, Y.; Wang, H.; Snyder, G.J. Characterization of Lorenz number with Seebeck coefficient measurement. APL Mater. 2015, 3, 041506. [Google Scholar] [CrossRef]
- Cahill, D.G.; Pohl, R.O. Heat flow and lattice vibrations in glasses. Solid State Commun. 1989, 70, 927–930. [Google Scholar] [CrossRef]
- Cahill, D.G.; Watson, S.K.; Pohl, R.O. Lower limit to the thermal conductivity of disordered crystals. Phys. Rev. B 1992, 46, 6131–6140. [Google Scholar] [CrossRef]
- Fukushima, K.; Suyama, H.; Tokumoto, Y.; Kamimura, Y.; Takagiwa, Y.; Edagawa, K. Comparative study of high-temperature specific heat for Al-Pd-Mn icosahedral quasicrystals and crystal approximants. J. Phys. Commun. 2021, 5, 085002. [Google Scholar] [CrossRef]
- Putatunda, A.; Singh, D.J. Lorenz number in relation to estimates based on the Seebeck coefficient. Mater. Today Phys. 2019, 8, 49–55. [Google Scholar] [CrossRef]
- Hou, Z.; Takagiwa, Y.; Shinohara, Y.; Xu, Y.; Tsuda, K. First-principles study of electronic structures and elasticity of Al2Fe3Si3. J. Phys. Condens. Matter 2021, 33, 195501. [Google Scholar] [CrossRef]
- Mott, P.H.; Roland, C.M. Limits to Poisson’s ratio in isotropic materials. Phys. Rev. B 2009, 80, 132104. [Google Scholar] [CrossRef]
- Tanaka, K.; Mitarai, Y.; Koiwa, M. Elastic constants of Al-based icosahedral quasicrystals. Philos. Mag. 1996, 73, 1715–1723. [Google Scholar] [CrossRef]
- Duquesne, J.-Y.; Perrin, B. Elastic wave interaction in icosahedral AlPdMn. Phys. B 2002, 316, 317–320. [Google Scholar] [CrossRef]
Sample | TS (K) | dbulk (g cm–3) | dcalc (g cm–3) | dbulk/dcalc (%) |
---|---|---|---|---|
x = 0 [16] | 1223 | 6.026 | 6.30 [22] | 95.7 |
x = 0.1 | 1233 | 5.924 | 6.17 | 96.0 |
x = 0.2 | 1233 | 5.810 | 6.05 | 96.0 |
x = 0.3 | 1233 | 5.656 | 5.92 | 95.5 |
x = 0.4 | 1223 | 5.648 | 5.80 | 97.4 |
x = 0.5 | 1223 | 5.517 | 5.67 | 97.3 |
Sample | κtotal,373K | κphonon,373K | κmin,373K | vlong/vtrans |
---|---|---|---|---|
(W m–1 K–1) | (W m–1 K–1) | (W m–1 K–1) | (m s–1) | |
x = 0 [16] | 1.28 | 1.05 | 1.05 | 6430/3420 |
x = 0.1 | 1.27 | 1.09 | 1.07 | 6400/3500 |
x = 0.2 | 1.16 | 1.01 | 1.09 | 6430/3660 |
x = 0.3 | 1.08 | 0.94 | 1.06 | 6370/3490 |
x = 0.4 | 1.25 | 1.14 | 1.09 | 6480/3590 |
x = 0.5 | 1.15 | 1.00 | 1.11 | 6690/3660 |
Sample | vs | Δvs/vs | CP,373K | ΔCP,373K/CP,373K |
(m s–1) | (%) | (J g−1 K−1) | (%) | |
x = 0 [16] | 3820 | - | 0.3997 | - |
x = 0.1 | 3900 | 2.1 | 0.4138 | 3.5 |
x = 0.2 | 4070 | 6.5 | 0.4249 | 6.3 |
x = 0.3 | 3890 | 1.8 | 0.3902 | −2.4 |
x = 0.4 | 4000 | 4.7 | 0.4124 | 3.1 |
x = 0.5 | 4080 | 6.8 | 0.3903 | 2.4 |
Sample | ν | E | G | B |
---|---|---|---|---|
(-) | (GPa) | (GPa) | (GPa) | |
x = 0 | 0.303 | 184 | 70.5 | 155 |
x = 0.1 | 0.287 | 187 | 72.6 | 146 |
x = 0.2 | 0.260 | 196 | 77.8 | 136 |
x = 0.3 | 0.286 | 177 | 68.9 | 138 |
x = 0.4 | 0.279 | 186 | 72.8 | 140 |
x = 0.5 | 0.286 | 190 | 73.9 | 148 |
i-Al–Pd–Mn [39] | 0.254 | - | 72.4 | 123 |
i-Al–Pd–Mn [40] | 0.256 | - | 70.4 | 121 |
i-Al–Cu–Fe [39] | 0.232 | - | 68.1 | 104 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takagiwa, Y. Thermoelectric Properties of Co-Substituted Al–Pd–Re Icosahedral Quasicrystals. Materials 2022, 15, 6816. https://doi.org/10.3390/ma15196816
Takagiwa Y. Thermoelectric Properties of Co-Substituted Al–Pd–Re Icosahedral Quasicrystals. Materials. 2022; 15(19):6816. https://doi.org/10.3390/ma15196816
Chicago/Turabian StyleTakagiwa, Yoshiki. 2022. "Thermoelectric Properties of Co-Substituted Al–Pd–Re Icosahedral Quasicrystals" Materials 15, no. 19: 6816. https://doi.org/10.3390/ma15196816
APA StyleTakagiwa, Y. (2022). Thermoelectric Properties of Co-Substituted Al–Pd–Re Icosahedral Quasicrystals. Materials, 15(19), 6816. https://doi.org/10.3390/ma15196816