Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions
Abstract
:1. Introduction
2. Nonlocal Elasticity
3. Material Properties of Short-Fiber-Reinforced Composite
4. Fourier Infinite Series with Stokes’ Transformation
5. Frequency Determinants for the Short-Fiber-Reinforced Micro-/Nano-Rods
5.1. General Case
5.2. Without Elastic Medium Effect
5.3. Without Nonlocal Effect
5.4. Without Elastic Medium and Size-Effect
6. Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Gül, U.; Aydogdu, M. On the Axial Vibration of Viscously Damped Short-Fiber-Reinforced Nano/Micro-composite Rods. J. Vib. Eng. Technol. 2022, 1–15. [Google Scholar] [CrossRef]
- Akbaş, Ş.D. Forced vibration analysis of a fiber reinforced composite beam. Adv. Mater. Res. 2021, 10, 57–66. [Google Scholar]
- Daikh, A.A.; Houari, M.S.A.; Belarbi, M.O.; Chakraverty, S.; Eltaher, M.A. Analysis of axially temperature-dependent functionally graded carbon nanotube reinforced composite plates. Eng. Comput. 2021, 38, 2533–2554. [Google Scholar] [CrossRef]
- Esen, I.; Daikh, A.A.; Eltaher, M.A. Dynamic response of nonlocal strain gradient FG nanobeam reinforced by carbon nanotubes under moving point load. Eur. Phys. J. Plus 2021, 136, 458. [Google Scholar] [CrossRef]
- Taati, E.; Borjalilou, V.; Fallah, F.; Ahmadian, M.T. On size-dependent nonlinear free vibration of carbon nanotube-reinforced beams based on the nonlocal elasticity theory: Perturbation technique. Mech. Based Des. Struct. Mach. 2022, 50, 2124–2146. [Google Scholar] [CrossRef]
- Borjalilou, V.; Taati, E.; Ahmadian, M.T. Bending, buckling and free vibration of nonlocal FG-carbon nanotube-reinforced composite nanobeams: Exact solutions. SN Appl. Sci. 2019, 1, 1323. [Google Scholar] [CrossRef]
- Lin, F.; Xiang, Y. Vibration of carbon nanotube reinforced composite beams based on the first and third order beam theories. Appl. Math. Model. 2014, 38, 3741–3754. [Google Scholar] [CrossRef]
- Ke, L.L.; Yang, J.; Kitipornchai, S. Dynamic stability of functionally graded carbon nanotube-reinforced composite beams. Mech. Adv. Mater. Struct. 2013, 20, 28–37. [Google Scholar] [CrossRef]
- Yas, M.H.; Samadi, N. Free vibrations and buckling analysis of carbon nanotube-reinforced composite Timoshenko beams on elastic foundation. Int. J. Press. Vessel. Pip. 2012, 98, 119–128. [Google Scholar] [CrossRef]
- Madenci, E. Free vibration analysis of carbon nanotube RC nanobeams with variational approaches. Adv. Nano Res. 2021, 11, 157–171. [Google Scholar]
- Chen, Q.; Zheng, S.; Li, Z.; Zeng, C. Size-dependent free vibration analysis of functionally graded porous piezoelectric sandwich nanobeam reinforced with graphene platelets with consideration of flexoelectric effect. Smart Mater. Struct. 2021, 30, 035008. [Google Scholar] [CrossRef]
- Manickam, G.; Gupta, P.; De, S.; Rajamohan, V.; Polit, O. Nonlinear flexural free vibrations of size-dependent graphene platelets reinforced curved nano/micro beams by finite element approach coupled with trigonometric shear flexible theory. Mech. Adv. Mater. Struct. 2022, 29, 2489–2515. [Google Scholar] [CrossRef]
- Sahmani, S.; Aghdam, M.M. Nonlocal strain gradient beam model for nonlinear vibration of prebuckled and postbuckled multilayer functionally graded GPLRC nanobeams. Compos. Struct. 2017, 179, 77–88. [Google Scholar] [CrossRef]
- Yang, X.; Liu, H.; Ma, J. Thermo-mechanical vibration of FG curved nanobeam containing porosities and reinforced by graphene platelets. Microsyst. Technol. 2020, 26, 2535–2551. [Google Scholar] [CrossRef]
- Zenkour, A.M.; Sobhy, M. Axial magnetic field effect on wave propagation in bi-layer FG graphene platelet-reinforced nanobeams. Eng. Comput. 2022, 38, 1313–1329. [Google Scholar] [CrossRef]
- Shariati, A.; Jung, D.w.; Mohammad-Sedighi, H.; Żur, K.K.; Habibi, M.; Safa, M. On the vibrations and stability of moving viscoelastic axially functionally graded nanobeams. Material 2020, 13, 1707. [Google Scholar] [CrossRef] [PubMed]
- Akgöz, B.; Civalek, O. Thermo-mechanical buckling behavior of functionally graded microbeams embedded in elastic medium. Int. J. Eng. Sci. 2014, 85, 90–104. [Google Scholar] [CrossRef]
- Civalek, O.; Uzun, B.; Yaylı, M.Ö. An effective analytical method for buckling solutions of a restrained FGM nonlocal beam. Comput. Appl. Math. 2022, 41, 67. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Barati, M.R.; Civalek, O. Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 2020, 36, 953–964. [Google Scholar] [CrossRef]
- Van Hieu, D.; Chan, D.Q.; Phi, B.G. Analysis of nonlinear vibration and instability of electrostatic functionally graded micro-actuator based on nonlocal strain gradient theory considering thickness effect. Microsyst. Technol. 2022, 28, 1845–1865. [Google Scholar] [CrossRef]
- Eftekhari, S.A.; Toghraie, D. Vibration and dynamic analysis of a cantilever sandwich microbeam integrated with piezoelectric layers based on strain gradient theory and surface effects. Appl. Math. Comput. 2022, 419, 126867. [Google Scholar]
- Fallah, Y.; Mohammadimehr, M. On the free vibration behavior of Timoshenko sandwich beam model with honeycomb core and nano-composite face sheet layers integrated by sensor and actuator layers. Eur. Phys. J. Plus 2022, 137, 741. [Google Scholar] [CrossRef]
- Hong, J.; Wang, S.; Qiu, X.; Zhang, G. Bending and Wave Propagation Analysis of Magneto-Electro-Elastic Functionally Graded Porous Microbeams. Crystals 2022, 12, 732. [Google Scholar] [CrossRef]
- Jalaei, M.H.; Thai, H.T.; Civalek, O. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 2022, 172, 103629. [Google Scholar] [CrossRef]
- Kar, U.K.; Srinivas, J. Frequency analysis and shock response studies in bidirectional functionally graded microbeam with thermal effects. J. Braz. Soc. Mech. Sci. Eng. 2022, 44, 311. [Google Scholar] [CrossRef]
- Faghidian, S.A.; Żur, K.K.; Reddy, J.N.; Ferreira, A.J.M. On the wave dispersion in functionally graded porous Timoshenko-Ehrenfest nanobeams based on the higher-order nonlocal gradient elasticity. Compos. Struct. 2022, 279, 114819. [Google Scholar] [CrossRef]
- Tang, Y.; Qing, H. Size-dependent nonlinear post-buckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models. Commun. Nonlinear Sci. Numer. Simul. 2022, 116, 106808. [Google Scholar] [CrossRef]
- Uzun, B.; Yaylı, M.Ö. Porosity dependent torsional vibrations of restrained FG nanotubes using modified couple stress theory. Mater. Today Commun. 2022, 32, 103969. [Google Scholar] [CrossRef]
- Eltaher, M.A.; Mohamed, N. Nonlinear stability and vibration of imperfect CNTs by doublet mechanics. Appl. Math. Comput. 2020, 382, 125311. [Google Scholar] [CrossRef]
- Fatahi-Vajari, A.; Imam, A. Axial vibration of single-walled carbon nanotubes using doublet mechanics. Indian J. Phys. 2016, 90, 447–455. [Google Scholar] [CrossRef]
- Gul, U.; Aydogdu, M. Noncoaxial vibration and buckling analysis of embedded double-walled carbon nanotubes by using doublet mechanics. Compos. Part B Eng. 2018, 137, 60–73. [Google Scholar] [CrossRef]
- Gul, U.; Aydogdu, M.; Gaygusuzoglu, G. Vibration and buckling analysis of nanotubes (nanofibers) embedded in an elastic medium using Doublet Mechanics. J. Eng. Math. 2018, 109, 85–111. [Google Scholar] [CrossRef]
- Karamanli, A. Structural behaviours of zigzag and armchair nanobeams using finite element doublet mechanics. Eur. J. Mech.-A/Solids 2021, 89, 104287. [Google Scholar] [CrossRef]
- Alizadeh, A.; Shishehsaz, M.; Shahrooi, S.; Reza, A. Free vibration characteristics of viscoelastic nano-disks based on modified couple stress theory. J. Strain Anal. Eng. Des. 2022, 03093247221116053. [Google Scholar] [CrossRef]
- Babaei, A.; Arabghahestani, M. Free vibration analysis of rotating beams based on the modified couple stress theory and coupled displacement field. Appl. Mech. 2021, 2, 226–238. [Google Scholar] [CrossRef]
- Hassannejad, R.; Hosseini, S.A.; Alizadeh-Hamidi, B. Influence of non-circular cross section shapes on torsional vibration of a micro-rod based on modified couple stress theory. Acta Astronaut. 2021, 178, 805–812. [Google Scholar] [CrossRef]
- Kumar, H.; Mukhopadhyay, S. Response of deflection and thermal moment of Timoshenko microbeams considering modified couple stress theory and dual-phase-lag heat conduction model. Compos. Struct. 2021, 263, 113620. [Google Scholar] [CrossRef]
- Al-Shewailiah, D.M.R.; Al-Shujairi, M.A. Static bending of functionally graded single-walled carbon nanotube conjunction with modified couple stress theory. Mater. Today Proc. 2022, 61, 1023–1037. [Google Scholar] [CrossRef]
- Jena, S.K.; Chakraverty, S.; Mahesh, V.; Harursampath, D. Application of Haar wavelet discretization and differential quadrature methods for free vibration of functionally graded micro-beam with porosity using modified couple stress theory. Eng. Anal. Bound. Elem. 2022, 140, 167–185. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Ersoy, H.; Civalek, O. Solution of Moore–Gibson–Thompson equation of an unbounded medium with a cylindrical hole. Mathematics 2021, 9, 1536. [Google Scholar] [CrossRef]
- Civalek, O.; Uzun, B.; Yaylı, M.Ö.; Akgöz, B. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 2020, 135, 381. [Google Scholar] [CrossRef]
- Numanoğlu, H.M.; Ersoy, H.; Akgöz, B.; Civalek, O. A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. 2022, 45, 2592–2614. [Google Scholar] [CrossRef]
- Yayli, M.Ö.; Yanik, F.; Kandemir, S.Y. Longitudinal vibration of nanorods embedded in an elastic medium with elastic restraints at both ends. Micro Nano Lett. 2015, 10, 641–644. [Google Scholar] [CrossRef]
- Aydogdu, M. Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech. Res. Commun. 2012, 43, 34–40. [Google Scholar] [CrossRef]
- Uzun, B.; Kafkas, U.; Deliktaş, B.; Yaylı, M.Ö. Size-Dependent Vibration of Porous Bishop Nanorod with Arbitrary Boundary Conditions and Nonlocal Elasticity Effects. J. Vib. Eng. Technol. 2022, 1–18. [Google Scholar] [CrossRef]
- Alizadeh Hamidi, B.; Khosravi, F.; Hosseini, S.A.; Hassannejad, R. Closed form solution for dynamic analysis of rectangular nanorod based on nonlocal strain gradient. Waves Random Complex Media 2020, 32, 2067–2083. [Google Scholar] [CrossRef]
- Babaei, A. Forced vibration analysis of non-local strain gradient rod subjected to harmonic excitations. Microsyst. Technol. 2021, 27, 821–831. [Google Scholar] [CrossRef]
- Li, L.; Hu, Y.; Li, X. Longitudinal vibration of size-dependent rods via nonlocal strain gradient theory. Int. J. Mech. Sci. 2016, 115, 135–144. [Google Scholar] [CrossRef]
- Zhu, X.; Li, L. Closed form solution for a nonlocal strain gradient rod in tension. Int. J. Eng. Sci. 2017, 119, 16–28. [Google Scholar] [CrossRef]
- Akgöz, B.; Civalek, O. A size-dependent shear deformation beam model based on the strain gradient elasticity theory. Int. J. Eng. Sci. 2013, 70, 1–14. [Google Scholar] [CrossRef]
- Akgöz, B.; Civalek, O. Bending analysis of embedded carbon nanotubes resting on an elastic foundation using strain gradient theory. Acta Astronaut. 2016, 119, 1–12. [Google Scholar] [CrossRef]
- Güven, U. Love–Bishop rod solution based on strain gradient elasticity theory. C. R. Méc. 2014, 342, 8–16. [Google Scholar] [CrossRef]
- Narendar, S.; Ravinder, S.; Gopalakrishnan, S. Strain gradient torsional vibration analysis of micro/nano rods. Int. J. Nano Dimens. 2012, 3, 1–17. [Google Scholar]
- Thai, L.M.; Luat, D.T.; Phung, V.B.; Minh, P.V.; Thom, D.V. Finite element modeling of mechanical behaviors of piezoelectric nanoplates with flexoelectric effects. Arch. Appl. Mech. 2022, 92, 163–182. [Google Scholar] [CrossRef]
- Duc, D.H.; Thom, D.V.; Cong, P.H.; Minh, P.V.; Nguyen, N.X. Vibration and static buckling behavior of variable thickness flexoelectric nanoplates. Mech. Based Des. Struct. Mach. 2022, 1–29. [Google Scholar] [CrossRef]
- Tho, N.C.; Ta, N.T.; Thom, D.V. New numerical results from simulations of beams and space frame systems with a tuned mass damper. Materials 2019, 12, 1329. [Google Scholar] [CrossRef]
- Tuan, L.T.; Dung, N.T.; Van Thom, D.; Van Minh, P.; Zenkour, A.M. Propagation of non-stationary kinematic disturbances from a spherical cavity in the pseudo-elastic cosserat medium. Eur. Phys. J. Plus 2021, 136, 1199. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Halpin, J.C. Effects of Environmental Factors on Composite Materials; Air Force Materials Lab Wright-Patterson AFB: Dayton, OH, USA, 1969. [Google Scholar]
- Agarwal, B.D.; Broutman, L.J. Analysis and Performance of Fiber Composites, 2nd ed.; Wiley: New York, NY, USA, 1990. [Google Scholar]
Mode Number | Analytical Solution [1] | Present |
---|---|---|
e0a = 0 nm | ||
1 | 3.5819 | 3.5819 |
2 | 7.1639 | 7.1639 |
3 | 10.7459 | 10.7459 |
e0a = 0.5 nm | ||
1 | 3.5709 | 3.5709 |
2 | 7.0771 | 7.0771 |
3 | 10.4594 | 10.4594 |
e0a = 1 nm | ||
1 | 3.5385 | 3.5385 |
2 | 6.8345 | 6.8345 |
3 | 9.7206 | 9.7206 |
Mode Number | Analytical Solution [1] | Present |
---|---|---|
e0a = 0 nm | ||
1 | 1.7909 | 1.7909 |
2 | 5.3729 | 5.3729 |
3 | 8.9549 | 8.9549 |
e0a = 0.5 nm | ||
1 | 1.7896 | 1.7896 |
2 | 5.3360 | 5.3360 |
3 | 8.7871 | 8.7871 |
e0a = 1 nm | ||
1 | 1.7854 | 1.7854 |
2 | 5.2297 | 5.2297 |
3 | 8.3352 | 8.3352 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Civalek, Ö.; Uzun, B.; Yaylı, M.Ö. Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions. Materials 2022, 15, 6803. https://doi.org/10.3390/ma15196803
Civalek Ö, Uzun B, Yaylı MÖ. Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions. Materials. 2022; 15(19):6803. https://doi.org/10.3390/ma15196803
Chicago/Turabian StyleCivalek, Ömer, Büşra Uzun, and Mustafa Özgür Yaylı. 2022. "Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions" Materials 15, no. 19: 6803. https://doi.org/10.3390/ma15196803
APA StyleCivalek, Ö., Uzun, B., & Yaylı, M. Ö. (2022). Nonlocal Free Vibration of Embedded Short-Fiber-Reinforced Nano-/Micro-Rods with Deformable Boundary Conditions. Materials, 15(19), 6803. https://doi.org/10.3390/ma15196803