Optimization of Tensile Strength and Young’s Modulus of CNT–CF/Epoxy Composites Using Response Surface Methodology (RSM)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Design of Experiments
2.2.2. Fabrication of the Hybrid MWCNT–CF Strips
2.2.3. Composite Preparation
2.2.4. Evaluation of Tensile Properties of Composites
2.2.5. Fourier Transform Infrared (FTIR) Spectroscopy
2.2.6. Scanning Electron Microscopy (SEM)
2.2.7. Statistical and Graphical Analysis of Composite’s Tensile Properties
2.2.8. Optimization of the Composite’s Tensile Properties
3. Results and Discussion
3.1. Characterization
3.1.1. Functional Group Analysis
3.1.2. Surface Morphological Analysis
3.2. Tensile and Statistical Analysis of Composites’ Properties
3.2.1. Tensile Properties of MWCNT–CF/Epoxy Composites
3.2.2. Fit Statistics
3.2.3. Mathematical Model for Tensile Strength and Young’s Modulus (in Terms of Coded Factors)
3.3. Graphical Analysis of Composites’ Mechanical Properties
3.3.1. Response Surface Plots Analysis of Tensile Properties
3.3.2. Prediction Versus Actual
3.4. Optimization of the EPD Process
4. Conclusions
5. Future Work
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Rodríguez-González, J.A.; Rubio-González, C. Influence of sprayed multi-walled carbon nanotubes on mode I and mode II interlaminar fracture toughness of carbon fiber/epoxy composites. Adv. Compos. Mater. 2019, 28, 19–36. [Google Scholar] [CrossRef]
- Matykiewicz, D. Hybrid epoxy composites with both powder and fiber filler: A review of mechanical and thermomechanical properties. Materials 2020, 13, 1802. [Google Scholar] [CrossRef]
- Mirsalehi, S.A.; Youzbashi, A.A.; Sazgar, A. Enhancement of out-of-plane mechanical properties of carbon fiber reinforced epoxy resin composite by incorporating the multi-walled carbon nanotubes. SN Appl. Sci. 2021, 3, 630. [Google Scholar] [CrossRef]
- Park, S.J.; Park, S.J. Effect of ozone-treated single-walled carbon nanotubes on interfacial properties and fracture toughness of carbon fiber-reinforced epoxy composites. Compos. Part A Appl. Sci. Manuf. 2020, 137, 105937. [Google Scholar] [CrossRef]
- Xiong, S.; Zhao, Y.; Wang, Y.; Song, J.; Zhao, X.; Li, S. Enhanced interfacial properties of carbon fiber/epoxy composites by coating carbon nanotubes onto carbon fiber surface by one-step dipping method. Appl. Surf. Sci. 2021, 546, 149135. [Google Scholar] [CrossRef]
- Keyte, J.; Pancholi, K.; Njuguna, J. Recent Developments in Graphene Oxide/Epoxy Carbon Fiber-Reinforced Composites. Front. Mater. 2019, 6, 224. [Google Scholar] [CrossRef]
- Yao, X.; Gao, X.; Jiang, J.; Xu, C.; Deng, C.; Wang, J. Comparison of carbon nanotubes and graphene oxide coated carbon fiber for improving the interfacial properties of carbon fiber/epoxy composites. Compos. Part B Eng. 2018, 132, 170–177. [Google Scholar] [CrossRef]
- Salahuddin, B.; Faisal, S.N.; Baigh, T.A.; Alghamdi, M.N.; Islam, M.S.; Song, B.; Zhang, X.; Gao, S.; Aziz, S. Carbonaceous Materials Coated Carbon Fibre Reinforced Polymer Matrix Composites. Polymers 2021, 13, 2771. [Google Scholar] [CrossRef]
- Bedi, H.S.; Agnihotri, P.K. Designing the interphase in carbon fiber polymer composites using carbon nanotubes. Procedia Struct. Integr. 2019, 14, 168–175. [Google Scholar] [CrossRef]
- Sheth, D.; Maiti, S.; Patel, S.; Kandasamy, J.; Chandan, M.R.; Rahaman, A. Enhancement of mechanical properties of carbon fiber reinforced epoxy matrix laminated composites with multiwalled carbon nanotubes. Fullerenes Nanotub. Carbon Nanostructures 2020, 29, 288–294. [Google Scholar] [CrossRef]
- Moaseri, E.; Karimi, M.; Baniadam, M.; Maghrebi, M. Enhancement in mechanical properties of multi-walled carbon nanotube–carbon fiber hybrid epoxy composite: Effect of electrostatic repulsion. Appl. Phys. A Mater. Sci. Process. 2016, 122, 1–8. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Md Akil, H.; Omar, M.F.; Abdul Kudus, M.H.; Mohd Sabri, F.N.A.; Abdullah, M.M.A.B. Enhancement of mechanical and thermal properties of carbon fiber epoxy composite laminates reinforced with carbon nanotubes interlayer using electrospray deposition. Compos. Part C Open Access 2020, 3, 100075. [Google Scholar] [CrossRef]
- Li, J.; Zhang, Z.; Fu, J.; Liang, Z.; Ramakrishnan, K.R. Mechanical properties and structural health monitoring performance of carbon nanotube-modified FRP composites: A review. Nanotechnol. Rev. 2021, 10, 1438–1468. [Google Scholar] [CrossRef]
- Hu, S.; Li, W.; Finklea, H.; Liu, X. A review of electrophoretic deposition of metal oxides and its application in solid oxide fuel cells. Adv. Colloid Interface Sci. 2020, 276, 102102. [Google Scholar] [CrossRef]
- Ma, Y.; Han, J.; Wang, M.; Chen, X.; Jia, S. Electrophoretic deposition of graphene-based materials: A review of materials and their applications. J. Mater. 2018, 4, 108–120. [Google Scholar] [CrossRef]
- Chavez-Valdez, A.; Shaffer, M.S.P.; Boccaccini, A.R. Applications of graphene electrophoretic deposition. A review. J. Phys. Chem. B 2013, 117, 1502–1515. [Google Scholar] [CrossRef]
- Ervina, J.; Ghaleb, Z.A.; Hamdan, S.; Mariatti, M. Colloidal stability of water-based carbon nanotube suspensions in electrophoretic deposition process: Effect of applied voltage and deposition time. Compos. Part A Appl. Sci. Manuf. 2019, 117, 1–10. [Google Scholar] [CrossRef]
- Ouedraogo, B.; Savadogo, O. Electrophoretic Deposition of Alumina and Nickel Oxide Particles. J. Sci. Res. Rep. 2013, 2, 190–205. [Google Scholar] [CrossRef]
- Amrollahi, P.; Krasinski, J.S.; Vaidyanathan, R.; Tayebi, L.; Vashaee, D. Electrophoretic Deposition (EPD): Fundamentals and Applications from Nano- to Microscale Structures Pouya. In Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties, and Characterization Techniques; Aliofkhazraei, M., Makhlouf, A.S.H., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 561–591. ISBN 9783319152660. [Google Scholar]
- Breig, S.J.M.; Luti, K.J.K. Response surface methodology: A review on its applications and challenges in microbial cultures. Mater. Today Proc. 2021, 42, 2277–2284. [Google Scholar] [CrossRef]
- Wu, Y.; Dhamodharan, D.; Wang, Z.; Wang, R.; Wu, L. Effect of electrophoretic deposition followed by solution pre-impregnated surface modified carbon fiber-carbon nanotubes on the mechanical properties of carbon fiber reinforced polycarbonate composites. Compos. Part B Eng. 2020, 195, 108093. [Google Scholar] [CrossRef]
- ASTM D638-14; Standard Test Method for Tensile Properties of Plastics. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM E168-16; Standard Practices for General Techniques of Infrared Quantitative Analysis. ASTM International: West Conshohocken, PA, USA, 2016.
- ASTM E1252-98; Standard Practice for General Techniques for Obtaining Infrared Spectra for Qualitative Analysis. ASTM International: West Conshohocken, PA, USA, 2021.
- Nandiyanto, A.B.D.; Oktiani, R.; Ragadhita, R. How to read and interpret ftir spectroscope of organic material. Indones. J. Sci. Technol. 2019, 4, 97–118. [Google Scholar] [CrossRef]
- Cecen, V.; Seki, Y.; Sarikanat, M.; Tavman, I.H. FTIR and SEM analysis of polyester- and epoxy-based composites manufactured by VARTM process. J. Appl. Polym. Sci. 2008, 108, 2163–2170. [Google Scholar] [CrossRef]
- Zhuang, J.; Li, M.; Pu, Y.; Ragauskas, A.J.; Yoo, C.G. Observation of potential contaminants in processed biomass using fourier transform infrared spectroscopy. Appl. Sci. 2020, 10, 4345. [Google Scholar] [CrossRef]
- Sarath Kumar, P.; Jayanarayanan, K.; Balachandran, M. Thermal and Mechanical Behavior of Functionalized MWCNT Reinforced Epoxy Carbon Fabric Composites. Mater. Today Proc. 2020, 24, 1157–1166. [Google Scholar] [CrossRef]
- dos Santos, A.S.; de Oliveira, T.C.; Rodrigues, K.F.; Silva, A.A.C.; Coppio, G.J.L.; da Silva Fonseca, B.C.; Simonetti, E.A.N.; Cividanes, L.D.S. Amino-functionalized carbon nanotubes for effectively improving the mechanical properties of pre-impregnated epoxy resin/carbon fiber. J. Appl. Polym. Sci. 2021, 138, 51355. [Google Scholar] [CrossRef]
- Zhang, C.; Liu, L.; Xu, Z.; Lv, H.; Wu, N.; Zhou, B.; Mai, W.; Zhao, L.; Tian, X.; Guo, X. Improvement for interface adhesion of epoxy/carbon fibers endowed with carbon nanotubes via microwave plasma-enhanced chemical vapor deposition. Polym. Compos. 2018, 39, E1262–E1268. [Google Scholar] [CrossRef]
- Tzetzis, D.; Tsongas, K.; Mansour, G. Determination of the mechanical properties of epoxy silica nanocomposites through FEA-supported evaluation of ball indentation test results. Mater. Res. 2017, 20, 1571–1578. [Google Scholar] [CrossRef]
- Li, S.; Tzeng, S.S.; Cherng, D.H.; Chiu, H.T. Mechanical properties of CNT/carbon fiber/epoxy hierarchical composites prepared using electrophoretic deposition. In Proceedings of the ICCM International Conferences on Composite Materials, Copenhagen, Danmark, 19–24 July 2015; pp. 1–7. [Google Scholar]
- Leão, S.G.; de Melo Martins, M.G.; Menezes, N.C.F.; de Mendonça Lima, F.L.R.; Silva, C.F.; Arantes, G.C.; Ávila, A.F. Experimental Multi-scale analysis of Carbon / Epoxy Composites Nano-Reinforced by Carbon Nanotubes / Multi-layer Graphene. Mater. Res. 2017, 20, 134–142. [Google Scholar] [CrossRef]
- Ahmad, A.; Lajis, M.A.; Yusuf, N.K.; Ab Rahim, S.N. Statistical optimization by the response surface methodology of direct recycled aluminum-alumina metal matrix composite (MMC-AlR) employing the metal forming process. Processes 2020, 8, 805. [Google Scholar] [CrossRef]
- Yunardi; Zulkifli. Masrianto Response Surface Methodology Approach to Optimizing Process Variables for the Densification of Rice Straw as a Rural Alternative Solid Fuel. J. Appl. Sci. 2011, 11, 1192–1198. [Google Scholar] [CrossRef] [Green Version]
- Nur Sabreena, A.H.; Nor Azma, Y.; Mohamad, O. Response Surface Methodology for Optimisation of Parameters for Extraction of Stevia Rebaudiana Using Water, H2O. Iioabj 2016, 7, 459–466. [Google Scholar]
- Isam, M.; Baloo, L.; Kutty, S.R.M.; Yavari, S. Optimisation and modelling of Pb(II) and Cu(II) biosorption onto red algae (Gracilaria changii) by using response surface methodology. Water 2019, 11, 2325. [Google Scholar] [CrossRef]
- Singh, S.; Singla, Y.P.; Arora, S. Statistical, diagnostic and response surface analysis of nefopam hydrochloride nanospheres using 3^5 box-behnken design. Int. J. Pharm. Pharm. Sci. 2015, 7, 89–101. [Google Scholar]
- Baghery Borooj, M.; Mousavi Shoushtari, A.; Haji, A.; Nosratian Sabet, E. Optimization of plasma treatment variables for the improvement of carbon fibres/epoxy composite performance by response surface methodology. Compos. Sci. Technol. 2016, 128, 215–221. [Google Scholar] [CrossRef]
- Kalita, K.; Dey, P.; Haldar, S. Search for accurate RSM metamodels for structural engineering. J. Reinf. Plast. Compos. 2019, 38, 1. [Google Scholar] [CrossRef]
- Pereira, L.M.S.; Milan, T.M.; Tapia-Blacido, D.R. Using Response Surface Methodology (RSM) to optimize 2G bioethanol production: A review. Biomass Bioenergy 2021, 151, 106166. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Leung, C.; Gao, F. A multi-parameter optimization model for the evaluation of shale gas recovery enhancement. Energies 2018, 11, 654. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Mohd Nasri, C.S.S.; Bin Arshad, S.E. Hydrothermal synthesis of hydroxyapatite powders using Response Surface Methodology (RSM). PLoS ONE 2021, 16, e0251009. [Google Scholar] [CrossRef]
- Mohmad Noor, B.N.A.R.B.; Abdul Rojab, N.N.B.; Bin Wahab, M.A.; Mat, K.B.; Binti Rusli, N.D.; Al-Amsyar, S.M.; Mahmud, M.; Harun, H.C. Feed Formulation of Improved Egg Custard formulation using Response Surface Methodology (RSM). IOP Conf. Ser. Earth Environ. Sci. 2020, 596, e012077. [Google Scholar] [CrossRef]
Factor | Name | Units | Type | Minimum | Maximum | Coded Low (–) | Coded High (+) | Mean | Std. Dev. |
---|---|---|---|---|---|---|---|---|---|
A | Volume | % (w/w) | Numeric | 0.0000 | 100.00 | 0.00 | 100.00 | 50.00 | 38.35 |
B | Voltage | V | Numeric | 10.00 | 20.00 | 10.00 | 20.00 | 15.00 | 3.83 |
C | Time | min | Numeric | 5.00 | 15.00 | 5.00 | 15.00 | 10.00 | 3.83 |
Factor | Name | Units | Type | Minimum | Maximum | Coded Low (–) | Coded High (+) | Mean | Std. Dev. |
---|---|---|---|---|---|---|---|---|---|
A | Volume | % (w/w) | Numeric | 20.00 | 80.00 | 20.00 | 80.00 | 50.00 | 23.01 |
B | Voltage | V | Numeric | 10.00 | 20.00 | 10.00 | 20.00 | 15.00 | 3.83 |
C | Time | min | Numeric | 5.00 | 15.00 | 5.00 | 15.00 | 10.00 | 3.83 |
Run | Factor 1 A: Volume %(w/w) | Factor 2 B: Voltage V | Factor 3 C: Time min |
---|---|---|---|
1 | 100 | 20 | 15 |
2 | 50 | 15 | 15 |
3 | 50 | 15 | 10 |
4 | 0 | 10 | 15 |
5 | 100 | 10 | 5 |
6 | 100 | 15 | 10 |
7 | 100 | 10 | 15 |
8 | 50 | 15 | 5 |
9 | 50 | 15 | 10 |
10 | 100 | 20 | 5 |
11 | 50 | 10 | 10 |
12 | 50 | 15 | 10 |
13 | 50 | 20 | 10 |
14 | 0 | 15 | 10 |
15 | 0 | 10 | 5 |
16 | 0 | 20 | 5 |
17 | 0 | 20 | 15 |
18 | 50 | 15 | 10 |
Run | Factor 1 A: Volume %(w/w) | Factor 2 B: Voltage V | Factor 3 C: Time min |
---|---|---|---|
1 | 50 | 10 | 10 |
2 | 20 | 20 | 5 |
3 | 50 | 15 | 10 |
4 | 20 | 15 | 10 |
5 | 20 | 10 | 15 |
6 | 80 | 10 | 5 |
7 | 20 | 20 | 15 |
8 | 50 | 15 | 5 |
9 | 50 | 15 | 10 |
10 | 50 | 20 | 10 |
11 | 80 | 10 | 15 |
12 | 20 | 10 | 5 |
13 | 50 | 15 | 10 |
14 | 80 | 20 | 15 |
15 | 80 | 15 | 10 |
16 | 80 | 20 | 5 |
17 | 50 | 15 | 15 |
18 | 50 | 15 | 10 |
Sample | Composite Description |
---|---|
Pure CF/epoxy composite | Epoxy laminated composite with 3 layers of woven CF |
MWCNT–CF/epoxy composite | Epoxy laminated composite with 3 layers of woven CF reinforced with CNT |
Sample | Tensile Strength N/mm2 | Young Modulus N/mm2 |
---|---|---|
Pure CF/epoxy composite | 5.062215 | 255.52 |
Run | Factor 1 A: Volume %(w/w) | Factor 2 B: Voltage V | Factor 3 C: Time min | Response 1 Tensile Strength N/mm2 | Response 2 Young Modulus N/mm2 |
---|---|---|---|---|---|
1 | 100 | 20 | 15 | 7.61305 | 243.22 |
2 | 50 | 15 | 15 | 2.79761 | 225.49 |
3 | 50 | 15 | 10 | 6.70479 | 243.25 |
4 | 0 | 10 | 15 | 5.19014 | 229.48 |
5 | 100 | 10 | 5 | 4.91122 | 226.02 |
6 | 100 | 15 | 10 | 6.99095 | 250.91 |
7 | 100 | 10 | 15 | 6.62504 | 279.9 |
8 | 50 | 15 | 5 | 4.63372 | 223.49 |
9 | 50 | 15 | 10 | 4.48362 | 230.14 |
10 | 100 | 20 | 5 | 7.72467 | 260.16 |
11 | 50 | 10 | 10 | 7.05371 | 277.86 |
12 | 50 | 15 | 10 | 5.40961 | 277.92 |
13 | 50 | 20 | 10 | 3.96249 | 252.71 |
14 | 0 | 15 | 10 | 7.41783 | 241.61 |
15 | 0 | 10 | 5 | 4.07182 | 265.58 |
16 | 0 | 20 | 5 | 4.47299 | 249.36 |
17 | 0 | 20 | 15 | 6.59651 | 252.66 |
18 | 50 | 15 | 10 | 4.90024 | 243.5 |
Run | Factor 1 A: Volume %(w/w) | Factor 2 B: Voltage V | Factor 3 C: Time min | Response 1 Tensile Strength N/mm2 | Response 2 Young Modulus N/mm2 |
---|---|---|---|---|---|
1 | 50 | 10 | 10 | 7.27661 | 251.96 |
2 | 20 | 20 | 5 | 6.10913 | 240.39 |
3 | 50 | 15 | 10 | 6.91568 | 211.87 |
4 | 20 | 15 | 10 | 4.04905 | 273.44 |
5 | 20 | 10 | 15 | 4.72418 | 223.92 |
6 | 80 | 10 | 5 | 5.13248 | 271.98 |
7 | 20 | 20 | 15 | 3.96751 | 216.1 |
8 | 50 | 15 | 5 | 5.19331 | 266.78 |
9 | 50 | 15 | 10 | 6.30199 | 268.28 |
10 | 50 | 20 | 10 | 7.22907 | 229.04 |
11 | 80 | 10 | 15 | 2.15553 | 218.42 |
12 | 20 | 10 | 5 | 4.19924 | 263.34 |
13 | 50 | 15 | 10 | 6.99927 | 256.43 |
14 | 80 | 20 | 15 | 7.1577 | 229.22 |
15 | 80 | 15 | 10 | 7.00801 | 251.08 |
16 | 80 | 20 | 5 | 6.94222 | 266.59 |
17 | 50 | 15 | 15 | 2.77799 | 187.59 |
18 | 50 | 15 | 10 | 6.1089 | 273.39 |
Design of Experiment | Response | R2 | Adjusted R2 | Predicted R2 | Adequate Precision |
---|---|---|---|---|---|
0% and 100% water | Tensile strength | 0.9234 | 0.6743 | 0.1744 | 6.5963 |
Young’s modulus | 0.7687 | 0.0170 | −13.3109 | 3.4278 | |
20% and 80% water | Tensile strength | 0.9688 | 0.8676 | −24.2311 | 10.5406 |
Young’s modulus | 0.7825 | 0.0756 | −11.9025 | 3.9312 |
Design of experiment | Response | C.V. % | PRESS |
---|---|---|---|
0% and 100% water | Tensile strength | 14.85 | 30.25 |
Young’s modulus | 7.29 | 81,140.52 | |
20% and 80% water | Tensile strength | 10.56 | 1119.50 |
Young’s modulus | 10.13 | 1.455× 105 |
Run | Volume Ratio | Voltage | Time | Tensile Strength (TS) | Young’s Modulus (E) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Actual | Pred | Residual | Error (%) | Actual | Pred | Residual | Error (%) | ||||
1 | 100 | 20 | 15 | 7.61 | 7.6 | 0.01 | 0.14 | 243.22 | 242.64 | 0.58 | 0.24 |
2 | 50 | 15 | 15 | 2.8 | 2.84 | −0.04 | −1.51 | 225.49 | 227.81 | −2.32 | −1.03 |
3 | 50 | 15 | 10 | 6.7 | 5.33 | 1.37 | 20.45 | 243.25 | 246.38 | −3.13 | −1.29 |
4 | 0 | 10 | 15 | 5.19 | 5.18 | 0.01 | 0.20 | 229.48 | 228.9 | 0.58 | 0.25 |
5 | 100 | 10 | 5 | 4.91 | 4.9 | 0.01 | 0.22 | 226.02 | 225.44 | 0.58 | 0.26 |
6 | 100 | 15 | 10 | 6.99 | 7.03 | −0.04 | −0.60 | 250.91 | 253.23 | −2.32 | –0.92 |
7 | 100 | 10 | 15 | 6.63 | 6.61 | 0.01 | 0.16 | 279.9 | 279.32 | 0.58 | 0.21 |
8 | 50 | 15 | 5 | 4.63 | 4.68 | −0.04 | −0.91 | 223.49 | 225.81 | −2.32 | −1.04 |
9 | 50 | 15 | 10 | 4.48 | 5.33 | −0.85 | −18.94 | 230.14 | 246.38 | −16.24 | −7.06 |
10 | 100 | 20 | 5 | 7.72 | 7.71 | 0.01 | 0.14 | 260.16 | 259.58 | 0.58 | 0.22 |
11 | 50 | 10 | 10 | 7.05 | 7.1 | −0.04 | −0.60 | 277.86 | 280.18 | −2.32 | −0.83 |
12 | 50 | 15 | 10 | 5.41 | 5.33 | 0.08 | 1.43 | 277.92 | 246.38 | 31.54 | 11.35 |
13 | 50 | 20 | 10 | 3.96 | 4 | −0.04 | −1.07 | 252.71 | 255.03 | −2.32 | −0.92 |
14 | 0 | 15 | 10 | 7.42 | 7.46 | −0.04 | −0.57 | 241.61 | 243.93 | −2.32 | −0.96 |
15 | 0 | 10 | 5 | 4.07 | 4.06 | 0.01 | 0.26 | 265.58 | 265 | 0.58 | 0.22 |
16 | 0 | 20 | 5 | 4.47 | 4.46 | 0.01 | 0.24 | 249.36 | 248.78 | 0.58 | 0.23 |
17 | 0 | 20 | 15 | 6.6 | 6.59 | 0.01 | 0.16 | 252.66 | 252.08 | 0.58 | 0.23 |
18 | 50 | 15 | 10 | 4.9 | 5.33 | −0.43 | −8.82 | 243.5 | 246.38 | −2.88 | −1.18 |
Run | Volume Ratio | Voltage | Time | Tensile Strength (TS) | Young’s Modulus (E) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Actual | Pred | Residual | Error (%) | Actual | Pred | Residual | Error (%) | ||||
1 | 50 | 10 | 10 | 7.28 | 7.55 | −0.28 | −3.78 | 251.96 | 255.06 | −3.10 | −1.23 |
2 | 20 | 20 | 5 | 6.11 | 6.04 | 0.07 | 1.13 | 240.39 | 239.61 | 0.78 | 0.32 |
3 | 50 | 15 | 10 | 6.92 | 6.31 | 0.61 | 8.80 | 211.87 | 249.39 | −37.52 | −17.71 |
4 | 20 | 15 | 10 | 4.05 | 4.32 | −0.28 | −6.79 | 273.44 | 276.54 | −3.10 | −1.13 |
5 | 20 | 10 | 15 | 4.72 | 4.66 | 0.07 | 1.46 | 223.92 | 223.14 | 0.78 | 0.35 |
6 | 80 | 10 | 5 | 5.13 | 5.06 | 0.07 | 1.34 | 271.98 | 271.2 | 0.78 | 0.29 |
7 | 20 | 20 | 15 | 3.97 | 3.9 | 0.07 | 1.73 | 216.1 | 215.32 | 0.78 | 0.36 |
8 | 50 | 15 | 5 | 5.19 | 5.47 | −0.28 | −5.30 | 266.78 | 269.88 | −3.10 | −1.16 |
9 | 50 | 15 | 10 | 6.3 | 6.31 | 0.00 | −0.07 | 268.28 | 249.39 | 18.89 | 7.04 |
10 | 50 | 20 | 10 | 7.23 | 7.5 | −0.28 | −3.80 | 229.04 | 232.14 | −3.10 | −1.35 |
11 | 80 | 10 | 15 | 2.16 | 2.09 | 0.07 | 3.19 | 218.42 | 217.64 | 0.78 | 0.36 |
12 | 20 | 10 | 5 | 4.2 | 4.13 | 0.07 | 1.64 | 263.34 | 262.56 | 0.78 | 0.29 |
13 | 50 | 15 | 10 | 7 | 6.31 | 0.69 | 9.90 | 256.43 | 249.39 | 7.04 | 2.75 |
14 | 80 | 20 | 15 | 7.16 | 7.09 | 0.07 | 0.96 | 229.22 | 228.44 | 0.78 | 0.34 |
15 | 80 | 15 | 10 | 7.01 | 7.28 | –0.28 | −3.92 | 251.08 | 254.18 | −3.10 | −1.23 |
16 | 80 | 20 | 5 | 6.94 | 6.87 | 0.07 | 0.99 | 266.59 | 265.81 | 0.78 | 0.29 |
17 | 50 | 15 | 15 | 2.78 | 3.05 | –0.28 | −9.90 | 187.59 | 190.69 | −3.10 | −1.65 |
18 | 50 | 15 | 10 | 6.11 | 6.31 | –0.20 | −3.23 | 273.39 | 249.39 | 24.00 | 8.78 |
Constraints | Conditions | Lower Limit | Upper Limit | Solution |
---|---|---|---|---|
Volume ratio, % (w/w) | In range | 0 | 100 | 99.99 |
Voltage (V) | In range | 10 | 20 | 10 |
Time (min) | In range | 5 | 15 | 12.14 |
Tensile strength | Maximize | - | - | 7.41 |
Young’s modulus | Maximize | - | - | 279.9 |
Constraints | Conditions | Lower limit | Upper Limit | Solution |
---|---|---|---|---|
Volume ratio, % (w/w) | In range | 20 | 80 | 44.80 |
Voltage (V) | In range | 10 | 20 | 10.04 |
Time (min) | In range | 5 | 15 | 6.89 |
Tensile strength | Maximize | - | - | 7.28 |
Young’s modulus | Maximize | - | - | 274.1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.R.; Taib, N.-A.A.B.; Matin, M.M.; Rahman, M.M.; Bakri, M.K.B.; Alexanrovich, T.P.; Vladimirovich, S.V.; Sanaullah, K.; Tazeddinova, D.; Khan, A. Optimization of Tensile Strength and Young’s Modulus of CNT–CF/Epoxy Composites Using Response Surface Methodology (RSM). Materials 2022, 15, 6746. https://doi.org/10.3390/ma15196746
Rahman MR, Taib N-AAB, Matin MM, Rahman MM, Bakri MKB, Alexanrovich TP, Vladimirovich SV, Sanaullah K, Tazeddinova D, Khan A. Optimization of Tensile Strength and Young’s Modulus of CNT–CF/Epoxy Composites Using Response Surface Methodology (RSM). Materials. 2022; 15(19):6746. https://doi.org/10.3390/ma15196746
Chicago/Turabian StyleRahman, Md. Rezaur, Nur-Azzah Afifah Binti Taib, Mohammed Mahbubul Matin, Mohammed Muzibur Rahman, Muhammad Khusairy Bin Bakri, Taranenko Pavel Alexanrovich, Sinitsin Vladimir Vladimirovich, Khairuddin Sanaullah, Diana Tazeddinova, and Afrasyab Khan. 2022. "Optimization of Tensile Strength and Young’s Modulus of CNT–CF/Epoxy Composites Using Response Surface Methodology (RSM)" Materials 15, no. 19: 6746. https://doi.org/10.3390/ma15196746