Numerical Simulation of Local Buckling of Submarine Pipelines under Combined Loading Conditions
Abstract
:1. Introduction
2. Critical Load of Local Buckling of Pipeline
2.1. Pipeline Buckling under External Pressure
2.2. Pipeline Buckling under Combined Action of Bending Moment and External Pressure
3. Finite Element Analysis
3.1. Finite Element Model
3.2. Pipe Material Parameters
3.3. Unit Selection
3.4. Boundary Conditions
4. Result Analysis and Discussion
4.1. Sensitivity Analysis of Local Buckling Defects of Submarine Pipelines
4.1.1. Comparison of Simulation Results with Measured Values
4.1.2. Effect of Depression on Critical Pressure
4.1.3. Sensitivity of Different Radius-Thickness Ratio to Defects
4.2. Nonlinear Local Buckling of Submarine Pipelines under Combined Axial Force, Bending Moment, and External Pressure
4.2.1. Analysis Model
4.2.2. Pressure-Displacement Curves of Pipelines Subjected to Different Bending Moments
4.2.3. Effect of Bending on Critical Pressure
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Xue, L.; Yu, Y.; Yu, J.; Xu, L.; Gao, J.; Liu, H. Local buckling study on subsea pipeline with ellipticity-denting defect. Ocean. Eng. 2018, 36, 92–99. [Google Scholar]
- Xue, L. Local Buckling Study on Subsea Pipeline with Ellipticity-Denting Defect. Master’s Thesis, Tianjin University, Tianjin, China, 2017. [Google Scholar]
- Li, M. Study on the Buckling Mechanism of Pipes under Bending Moment and Pressure. Master’s Thesis, Tianjin University, Tianjin, China, 2019. [Google Scholar]
- Ramasamy, R.; Ya, T.T. Nonlinear finite element analysis of collapse and post-collapse behaviour in dented submarine pipelines. Appl. Ocean. Res. 2014, 46, 116–123. [Google Scholar] [CrossRef]
- Pournara, A.E.; Papatheocharis, T.; Karamanos, S.A.; Perdikaris, P.C. Mechanical behavior of dented steel pipes subjected to bending and pressure loading. J. Offshore Mech. Arct. Eng. 2018, 141, 011702. [Google Scholar] [CrossRef]
- Liu, R.; Li, C. Determinate dimension of numerical simulation model in submarine pipeline global buckling analysis. Ocean. Eng. 2018, 152, 26–35. [Google Scholar] [CrossRef]
- Liu, W.; Liu, A. Numerical research on the lateral global buckling characteristics of a high temperature and pressure pipeline with two initial imperfections. PLoS ONE 2018, 13, e0194426. [Google Scholar] [CrossRef] [PubMed]
- Keple, J.; Prusty, G.; Pearce, G.; Kelly, D.; Thomson, R.; Degenhardt, R. Influence of Imperfections on Axial Buckling Load of Composite Cylindrical Shells. In Proceedings of the International Conference on Composite Materials, Montreal, QC, Canada, 28 July–2 August 2013. [Google Scholar]
- Degenhardt, R. New Achievements in Stability of Composite Aerospace Structures. In Proceedings of the International Conference on Vibrations and Buckling, Porto, Portugal, 7−8 March 2016. [Google Scholar]
- Zhang, R.; Zhang, Q.; Huang, Y. Collapse Buckling Study on Deepwater Pipelines with Small Radius-thickness Ratio. Ship Eng. 2012, 34, 45–54. [Google Scholar]
- Li, X.Z.; Li, Z.B.; Yu, J.X.; Yang, Y.; Zhang, Y.; Sun, Z.Z. Research on the structure reliability based on the collapse of deepsea pipes. China Offshore Oil Gas 2013, 25, 64–68. [Google Scholar]
- Tian, L.; Ye, T.; Peng, C.; Tian, R.; Xie, T. Buckling Research of Subsea Pipelines with Initial Defects under External Pressure. Oil Field Equip. 2017, 46, 19–26. [Google Scholar]
- Yu, J.; Li, M.; Yu, Y.; Han, M.; Li, Y.; Yu, J. Buckling Collapse of a Subsea Pipeline Under Bending Moment and Hydrostatic Pressure. J. Tianjin Univ. Sci. Technol. 2020, 53, 411–418. [Google Scholar]
- Chen, Y.; Hou, F.; Huang, J.; Dong, S.; He, G.; Liu, Y.; Wang, C. Local buckling and ultimate moment capacity of subsea pipelines with dent defects under combined loads including external pressure and couple. J. China Univ. Pet. Ed. Nat. Sci. 2022, 46, 166–173. [Google Scholar]
- Timoshenko, S.P. Theory of Elastic Stability; McGraw-Hill: New York, NY, USA, 1961; p. 54. [Google Scholar]
- Kogakusi, K.I. Failure of Thin Circular Tubes under Combined Bending and Internal and External Pressure. J. Jpn. Soc. Aerosp. Eng. 1980, 7, 1100. [Google Scholar]
- Palmer, A.C.; Martin, J.H. Buckle propagation in submarine pipelines. Nature 1975, 254, 46–48. [Google Scholar] [CrossRef]
- Kyriakides, S.; Corona, E. Mechanics of Offshore Pipelines; Elsevier: Tokyo, Japan, 2007; pp. 1–14. [Google Scholar]
42 | 1 | 42 | 69 | 1500 | 90 | 0.0013 | 11.59 | 151.29 |
28 | 1 | 28 | 69 | 1500 | 90 | 0.0013 | 7.91 | 70.56 |
M = 0 | M = 0.2 Mp | M = 0.4 Mp | M = 0.6 Mp | M = 0.8 Mp | |
---|---|---|---|---|---|
critical buckling pressure | 2.12 MPa | 2.07 MPa | 1.90 MPa | 1.83 MPa | 1.73 MPa |
reduction rate | 0 | 2.36% | 10.38% | 13.68% | 18.40% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, W.; Ren, J. Numerical Simulation of Local Buckling of Submarine Pipelines under Combined Loading Conditions. Materials 2022, 15, 6387. https://doi.org/10.3390/ma15186387
Su W, Ren J. Numerical Simulation of Local Buckling of Submarine Pipelines under Combined Loading Conditions. Materials. 2022; 15(18):6387. https://doi.org/10.3390/ma15186387
Chicago/Turabian StyleSu, Wenxian, and Jie Ren. 2022. "Numerical Simulation of Local Buckling of Submarine Pipelines under Combined Loading Conditions" Materials 15, no. 18: 6387. https://doi.org/10.3390/ma15186387
APA StyleSu, W., & Ren, J. (2022). Numerical Simulation of Local Buckling of Submarine Pipelines under Combined Loading Conditions. Materials, 15(18), 6387. https://doi.org/10.3390/ma15186387