Investigation of the Kinetics of Hysteresis Effects in Silica Gel
Abstract
:1. Introduction
2. Materials and Methods
2.1. Material
2.2. Sorption Measurement
2.3. Modelling of the Sorption Process
2.4. Modelling of the Sorption Experiment
2.5. Hysteresis Effects in Porous Materials
3. Results
4. Discussion
4.1. Equilibrium Water Content of Silica Gel
4.2. Sorption Kinetics of Silica Gel
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Labuza, T.P.; Hyman, C.R. Moisture migration and control in multi-domain foods. Trends Food Sci. Technol. 1998, 9, 47–55. [Google Scholar] [CrossRef]
- Mahajan, P. Development of a moisture absorber for packaging of fresh mushrooms (Agaricus bisporus). Postharvest Biol. Technol. 2008, 48, 408–414. [Google Scholar] [CrossRef]
- Waterman, K.C.; MacDonald, B.C. Package Selection for Moisture Protection for Solid, Oral Drug Products. J. Pharm. Sci. 2010, 99, 4437–4452. [Google Scholar] [CrossRef]
- Allinson, J.G.; Dansereau, R.J.; Sakr, A. The effects of packaging on the stability of a moisture sensitive compound. Int. J. Pharm. 2001, 221, 49–56. [Google Scholar] [CrossRef]
- Rux, G.; Mahajan, P.V.; Linke, M.; Pant, A.; Sängerlaub, S.; Caleb, O.J.; Geyer, M. Humidity-Regulating Trays: Moisture Absorption Kinetics and Applications for Fresh Produce Packaging. Food Bioprocess Technol. 2016, 9, 709–716. [Google Scholar] [CrossRef]
- Jalali, A.; Linke, M.; Geyer, M.; Mahajan, P.V. Shelf life prediction model for strawberry based on respiration and transpiration processes. Food Packag. Shelf Life 2020, 25, 100525. [Google Scholar] [CrossRef]
- Joshia, K.; Tiwarib, B.; Cullenc, P.J.; Friasa, J.M. Predicting quality attributes of strawberry packed under modified atmosphere throughout the cold chain. Food Packag. Shelf Life 2019, 21, 100354. [Google Scholar] [CrossRef]
- Lee, D.S.; Robertson, G.L. Interactive influence of decision criteria, packaging film, storage temperature and humidity on shelf life of packaged dried vegetables. Food Packag. Shelf Life 2021, 28, 100674. [Google Scholar] [CrossRef]
- Langmuir, I. The Constitution and fundamental properties of solids and liquids, part I solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Al-Muhtaseb, A.H.; McMinn, W.A.M.; Magee, T.R.A. Moisture sorption isotherm characteristics of food products: A review. Food Bioprod. Processing 2002, 80, 118–128. [Google Scholar] [CrossRef]
- Caurie, M. Hysteresis phenomenon in foods. Int. J. Food Sci. Technol. 2007, 42, 45–49. [Google Scholar] [CrossRef]
- Libby, B.; Monson, P.A. Adsorption/Desorption Hysteresis in Inkbottle Pores: A Density Functional Theory and Monte Carlo Simulation Study. Langmuir 2004, 20, 4289–4294. [Google Scholar] [CrossRef]
- Ozdemir, M.; Floros, J. Active Food packaging Technologies. Critital Rev. Food Sci. Nutr. 2004, 44, 185–193. [Google Scholar] [CrossRef]
- Weintraub, S. Demystifying silica gel. AIC Objects Spec. Group Postprints 2002, 9, 169–194. [Google Scholar]
- Sängerlaub, S.; Kucukpinar, E.; Müller, K. Polyethylene with Dispersed Silica Gel-Water Vapor Absorption, Permeability (H2O, N2, O2, CO2), and Mechanical Propertie. Materials 2019, 12, 2304. [Google Scholar] [CrossRef]
- Nga, K.C.; Chuaa, H.T.; Chunga, C.Y.; CLokea, H.; Kashiwagic, T.; Akisawac, A.; Saha, B.B. Experimental investigation of the silica gel-water adsorption isotherm characteristics. Appl. Therm. Eng. 2001, 21, 1631–1642. [Google Scholar] [CrossRef]
- Pedram, E.O.; Hines, A.L. Pure Vapor Adsorption of Water on Mobil R Silica Gel. J. Chem. Eng. Data 1983, 28, 11–14. [Google Scholar] [CrossRef]
- Meinders, M.B.J.; Vliet, T.V. Modeling water sorption dynamics of cellular solid food systems using free volume theory. Food Hydrocoll. 2009, 23, 2234–2242. [Google Scholar] [CrossRef]
- Pidgeon, L.M. Hysteresis in silica gel sorption systems. Can. J. Res. 1934, 10, 713–729. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Revellame, E.D.; Fortela, D.L.; Sharp, W.; Hernandez, R.; Zappi, M.E. Adsorption kinetic modeling using pseudo-first order and pseudo-second order rate laws: A review. Clean. Eng. Technol. 2020, 1, 100032. [Google Scholar] [CrossRef]
- Coleman, T.F.; Li, Y. An Interior, Trust Region Approach for Nonlinear Minimization Subject to Bounds. SIAM J. Optim. 1996, 6, 418–445. [Google Scholar] [CrossRef] [Green Version]
- Book, S.A.; Lao, N.Y. Minimum-Percentage-Error Regression under Zero-Bias Constraints. In Proceedings of the Fourth Annual U.S. Army Conference on Applied Statistics, Fort Eusti, VA, USA, 21–23 October 1998; Report No. ARL-SR-84. U.S. Army Research Laboratory: Adelphi, MD, USA, 1999; pp. 47–54. [Google Scholar]
- Ohara, S.; Adschiri, T.; Ida, T.; Yashima, M.; Mikayama, T.; Abe, H.; Setsuhara, Y.; Nogi, K.; Miyahara, M.; Kaneko, K.; et al. Characterization methods for nanostructure of materials. In Nanoparticle Technology Handbook; Elsevier: Amsterdam, The Netherlands, 2008; pp. 267–315. [Google Scholar]
Subset | RH | wi,iso [kg/kg] | wi,final.mess [kg/kg] | ||
---|---|---|---|---|---|
1 a | 10 | 0.920 | 0.041 | 0.041 | 1.81 |
1 b | 40 | 0.851 | 0.176 | 0.176 | 0.94 |
1 c | 30 | 0.667 | 0.126 | 0.125 | 0.81 |
2 a | 20 | 0.944 | 0.080 | 0.080 | 0.27 |
2 b | 40 | 0.819 | 0.176 | 0.176 | 0.50 |
2 c | 30 | 0.723 | 0.126 | 0.126 | 0.66 |
3 a | 50 | 0.715 | 0.238 | 0.238 | 0.60 |
3 b | 40 | 0.818 | 0.194 | 0.194 | 0.28 |
3 c | 30 | 0.491 | 0.127 | 0.126 | 0.70 |
4 a | 60 | 0.749 | 0.300 | 0.300 | 0.48 |
4 b | 40 | 0.701 | 0.223 | 0.223 | 0.87 |
4 c | 30 | 0.400 | 0.127 | 0.127 | 0.58 |
5 a | 70 | 0.976 | 0.333 | 0.333 | 0.74 |
5 b | 40 | 0.528 | 0.272 | 0.271 | 1.31 |
5 c | 30 | 0.321 | 0.127 | 0.127 | 0.73 |
6 a | 80 | 1.283 | 0.343 | 0.343 | 1.10 |
6 b | 40 | 0.798 | 0.294 | 0.294 | 1.10 |
6 c | 30 | 0.306 | 0.127 | 0.127 | 1.59 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pöllmann, A.; Reinelt, M.; Briesen, H. Investigation of the Kinetics of Hysteresis Effects in Silica Gel. Materials 2022, 15, 6031. https://doi.org/10.3390/ma15176031
Pöllmann A, Reinelt M, Briesen H. Investigation of the Kinetics of Hysteresis Effects in Silica Gel. Materials. 2022; 15(17):6031. https://doi.org/10.3390/ma15176031
Chicago/Turabian StylePöllmann, Alexander, Matthias Reinelt, and Heiko Briesen. 2022. "Investigation of the Kinetics of Hysteresis Effects in Silica Gel" Materials 15, no. 17: 6031. https://doi.org/10.3390/ma15176031
APA StylePöllmann, A., Reinelt, M., & Briesen, H. (2022). Investigation of the Kinetics of Hysteresis Effects in Silica Gel. Materials, 15(17), 6031. https://doi.org/10.3390/ma15176031