The Mechanism of Wear Reduction in the Ni-CaF2 Composite Material: Raman and Confocal Microscopy Insights
Abstract
:1. Introduction
2. Experimental Methods
2.1. Powder Metallurgy
2.2. Wear Tests
2.3. SEM and EDS Analysis
2.4. Confocal Microscopy
2.5. Raman Spectroscopy
3. Results and Discussion
3.1. Wear Tests
- -
- ∆m—mass loss (mg),
- -
- mi—initial mass of counter-sample (mg),
- -
- mf—final mass of counter-sample (mg).
3.2. Worn Surface Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Liu, X.; Yuan, J.; Lou, S.; Li, D.; Cheng, W. Effect of Fe on the High-Temperature Tribological Behavior of NiAl/WC-Fexself-Lubricating Composites Produced by Thermal Explosion. Mater. Res. Express 2020, 7, 076516. [Google Scholar] [CrossRef]
- Lo, W.-L.; Hsu, S.-Y.; Lin, Y.-C.; Tsai, S.-Y.; Lai, Y.-T.; Duh, J.-G. Improvement of High Entropy Alloy Nitride Coatings (AlCrNbSiTiMo)N on Mechanical and High Temperature Tribological Properties by Tuning Substrate Bias. Surf. Coat. Technol. 2020, 401, 126247. [Google Scholar] [CrossRef]
- Vuchkov, T.; Yaqub, T.B.; Evaristo, M.; Cavaleiro, A. Synthesis, Microstructural and Mechanical Properties of Self-Lubricating Mo-Se-C Coatings Deposited by Closed-Field Unbalanced Magnetron Sputtering. Surf. Coat. Technol. 2020, 394, 125889. [Google Scholar] [CrossRef]
- Xiao, J.; Wu, Y.; Zhang, W.; Chen, J.; Zhang, C. Friction of Metal-Matrix Self-Lubricating Composites: Rrelationships among Lubricant Content, Lubricating Film Coverage, and Friction Coefficient. Friction 2020, 8, 517–530. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.H.; Wohn Lee, S. Wear and Friction Behavior of Self-Lubricating Alumina-Zirconia-Fluoride Composites Fabricated by the PECS Technique. Ceram. Int. 2014, 40, 779–790. [Google Scholar] [CrossRef]
- Li, R.; Yamashita, S.; Yoshida, K.; Kita, H. Effect of Counterbody on Friction and Wear Properties of Copper-MgP-Graphite Composites Prepared by Powder Metallurgy. Processes 2022, 10, 804. [Google Scholar] [CrossRef]
- Mohamad, W.F.; Khan, A.A.; Barroy, P.; Durand-Drouhin, O.; Puille, C.; Lahmar, A.; Ahmad, F. Microstructure and Surface Characterization of Ni-Cr Based Composites Containing Variable Solid Lubricants. Tribol.-Mater. Surf. Interfaces 2020, 14, 219–228. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Makuch, N.; Kulka, M. Wear Behavior of Self-Lubricating Boride Layers Produced on Inconel 600-Alloy by Laser Alloying. Wear 2019, 426–427, 919–933. [Google Scholar] [CrossRef]
- Piasecki, A.; Kotkowiak, M.; Kulka, M. Self-Lubricating Surface Layers Produced Using Laser Alloying of Bearing Steel. Wear 2017, 376–377, 993–1008. [Google Scholar] [CrossRef]
- Zhu, L.; Luo, L.; Wu, Y.; Cheng, J. Microstructure and Tribological Properties of Laser Clad Ni-Ag/Tic Composite Coating. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2014, 29, 242–245. [Google Scholar] [CrossRef]
- Niu, W.; Sun, R.; Lei, Y. Microstructure and Wear Properties of Laser Clad NiCrBSi-MoS2 Coating. Frict. Wear Res. 2014, 2, 2–6. [Google Scholar]
- Yan, H.; Zhang, J.; Zhang, P.; Yu, Z.; Li, C.; Xu, P.; Lu, Y. Laser Cladding of Co-Based Alloy/TiC/CaF2 Self-Lubricating Composite Coatings on Copper for Continuous Casting Mold. Surf. Coat. Technol. 2013, 232, 362–369. [Google Scholar] [CrossRef]
- Luo, J.; Liu, X.B.; Xiang, Z.F.; Shi, S.H.; Chen, Y.; Shi, G.L.; Wu, S.H.; Wu, Y.N. Synthesis of High-Temperature Self-Lubricating Wear Resistant Composite Coating on Ti6Al4V Alloy by Laser Deposition. J. Mater. Eng. Perform. 2015, 24, 1881–1889. [Google Scholar] [CrossRef]
- Yan, H.; Zhang, P.; Yu, Z.; Lu, Q.; Yang, S.; Li, C. Microstructure and Tribological Properties of Laser-Clad Ni-Cr/TiB2 Composite Coatings on Copper with the Addition of CaF2. Surf. Coat. Technol. 2012, 206, 4046–4053. [Google Scholar] [CrossRef]
- Liu, S.; Pang, M. Effect of TiB2 Content on Properties of Nickel-Coated Graphite Self-Lubricating Coating Prepared by Laser Cladding. Coatings 2021, 11, 1501. [Google Scholar] [CrossRef]
- Liu, K.; Yan, H.; Zhang, P.; Zhao, J.; Yu, Z.; Lu, Q. Wear Behaviors of TiN/WS2 + HBN/NiCrBSi Self-Lubricating Composite Coatings on TC4 Alloy by Laser Cladding. Coatings 2020, 10, 747. [Google Scholar] [CrossRef]
- OuYang, C.S.; Liu, X.B.; Luo, Y.S.; Liang, J.; Wang, M.; Chen, D.Q. Preparation and High Temperature Tribological Properties of Laser In-Situ Synthesized Self-Lubricating Composite Coating on 304 Stainless Steel. J. Mater. Res. Technol. 2020, 9, 7034–7046. [Google Scholar] [CrossRef]
- Deng, J.; Liu, L.; Yang, X.; Liu, J.; Sun, J.; Zhao, J. Self-Lubrication of Al2O3/TiC/CaF2 Ceramic Composites in Sliding Wear Tests and in Machining Processes. Mater. Des. 2007, 28, 757–764. [Google Scholar] [CrossRef]
- Yang, J.F.; Jiang, Y.; Hardell, J.; Prakash, B.; Fang, Q.F. Influence of Service Temperature on Tribological Characteristics of Self-Lubricant Coatings: A Review. Front. Mater. Sci. 2013, 7, 28–39. [Google Scholar] [CrossRef]
- Wu, G.; Xu, C.; Xiao, G.; Yi, M.; Chen, Z. Structure Design of Al2O3/TiC/CaF2 Multicomponent Gradient Self-Lubricating Ceramic Composite and Its Tribological Behaviors. Ceram. Int. 2018, 44, 5550–5563. [Google Scholar] [CrossRef]
- Ouyang, J.H.; Sasaki, S. Effects of Different Additives on Microstructure and High-Temperature Tribological Properties of Plasma-Sprayed Cr2O3 Ceramic Coatings. Wear 2001, 249, 56–66. [Google Scholar] [CrossRef]
- Konopka, K.; Roik, T.A.; Gavrish, A.P.; Vitsuk, Y.Y.; Mazan, T. Effect of CaF2 Surface Layers on the Friction Behavior of Copper-Based Composite. Powder Metall. Met. Ceram. 2012, 51, 363–367. [Google Scholar] [CrossRef]
- Zhen, J.; Han, Y.; Cheng, J.; Chen, W.; Yang, J.; Jia, Z.; Zhang, R. Enhancing the Wide Temperature Dry Sliding Tribological Performance of Nickle-Alloy by Adding MoS2/CaF2. Tribol. Int. 2022, 165, 107254. [Google Scholar] [CrossRef]
- Zhang, G.; Xiao, G.; Chen, Z.; Guo, N.; Xu, C.; Yi, M.; Zhang, J.; Zhou, T. A New Preparation Method of CaF2@SiO2 Nano Solid Lubricant and Analysis of Its Coating Mechanism. J. Alloys Compd. 2021, 883, 160795. [Google Scholar] [CrossRef]
- Ouyang, J.H.; Li, Y.F.; Wang, Y.M.; Zhou, Y.; Murakami, T.; Sasaki, S. Microstructure and Tribological Properties of ZrO2(Y2O3) Matrix Composites Doped with Different Solid Lubricants from Room Temperature to 800 °C. Wear 2009, 267, 1353–1360. [Google Scholar] [CrossRef]
- Cho, J.; Xiong, Y.; Kim, J.; Lee, C.; Hwang, S.Y. Tribological Behavior of NiCr-Base Blended and Nanostructured Composite APS Coatings by Rig Test. Wear 2008, 265, 1565–1571. [Google Scholar] [CrossRef]
- Cui, G.; Lu, L.; Wu, J.; Liu, Y.; Gao, G. Microstructure and Tribological Properties of Fe-Cr Matrix Self-Lubricating Composites against Si3N4 at High Temperature. J. Alloys Compd. 2014, 611, 235–242. [Google Scholar] [CrossRef]
- Kumar, R.; Hussainova, I.; Rahmani, R.; Antonov, M. Solid Lubrication at High-Temperatures—A Review. Materials 2022, 15, 1695. [Google Scholar] [CrossRef]
- Zuomin, L.; Childs, T.H.C. The Study of Wear Characteristics of Sintered High Speed Steels Containing CaF2, MnS and TiC Additives at Elevated Temperature. Wear 2004, 257, 435–440. [Google Scholar] [CrossRef]
- Zhang, X.F.; Zhang, L.; Huang, Z.Y. Characterization of Ni-Based Alloy Submicron WS2/CaF2 Composite Coatings Deposited by High Velocity Oxy-Fuel (HVOF) Spray Process. Adv. Mater. Res. 2014, 881–883, 1407–1411. [Google Scholar] [CrossRef]
- Kobayashi, T.; Maruyama, T.; Yasuda, T. Sliding Properties of Composite Sprayed Coating between Bronze Powder and Solid Lubricant. Mater. Trans. 2003, 44, 1024–1028. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Yang, X.; Wang, S.; Yang, L. Tribological Properties of Self-Lubricating Laminated Ceramic Materials. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2014, 29, 906–911. [Google Scholar] [CrossRef]
- Podgornik, B.; Vižintin, J.; Borovšak, U.; Megušar, F. Tribological Properties of DLC Coatings in Helium. Tribol. Lett. 2012, 47, 223–230. [Google Scholar] [CrossRef]
- Dhiman, N.; Ghosh, S.; Mishra, Y.K.; Tripathi, K.M. Prospects of Nano-Carbons as Emerging Catalysts for Enzyme-Mimetic Applications. Mater. Adv. 2022, 3, 3101–3122. [Google Scholar] [CrossRef]
- Li, X.; Dai, W.; Wang, Q.; Liang, Y.; Wu, Z. Diamond-like/Graphite-like Carbon Composite Films Deposited by High-Power Impulse Magnetron Sputtering. Diam. Relat. Mater. 2020, 106, 107818. [Google Scholar] [CrossRef]
- Xin, Y.; Li, T.; Gong, D.; Xu, F.; Wang, M. Preparation and Tribological Properties of Graphene Oxide/Nano-MoS2 Hybrid as Multidimensional Assembly Used in the Polyimide Nanocomposites. RSC Adv. 2017, 7, 6323–6335. [Google Scholar] [CrossRef] [Green Version]
- Jia, Z.; Hao, C.; Yan, Y.; Yang, Y. Effects of Nanoscale Expanded Graphite on the Wear and Frictional Behaviors of Polyimide-Based Composites. Wear 2015, 338–339, 282–287. [Google Scholar] [CrossRef]
- Xu, X.; Wang, C.; Chen, M.; Zhu, S.; Chen, Z.; Chen, J.; Wang, F. An Easy-Processing Organic-Inorganic Self-Lubricating Composite Coating with High Corrosion Resistance. Prog. Org. Coat. 2019, 137, 105377. [Google Scholar] [CrossRef]
- Peng, S.; Zhang, L.; Xie, G.; Guo, Y.; Si, L.; Luo, J. Friction and Wear Behavior of PTFE Coatings Modified with Poly (Methyl Methacrylate). Compos. Part B Eng. 2019, 172, 316–322. [Google Scholar] [CrossRef]
- Xu, Y.; Gong, Y.; Li, P.; Yang, Y.; Qi, Y. The Effect of Laser Power on the Microstructure and Wear Performance of IN718 Superalloy Fabricated by Laser Additive Manufacturing. Int. J. Adv. Manuf. Technol. 2020, 108, 2245–2254. [Google Scholar] [CrossRef]
- Schwingenschlögl, P.; Merklein, M. Characterization of Tribological Conditions within Direct Hot Stamping. J. Mater. Process. Technol. 2020, 278, 116535. [Google Scholar] [CrossRef]
- Davis, D.; Marappan, G.; Sivalingam, Y.; Panigrahi, B.B.; Singh, S. Tribological Behavior of NiMoAl-Based Self-Lubricating Composites. ACS Omega 2020, 5, 14669–14678. [Google Scholar] [CrossRef] [PubMed]
- Kotkowiak, M.; Piasecki, A.; Kulka, M. The Influence of Solid Lubricant on Tribological Properties of Sintered Ni–20% CaF2 Composite Material. Ceram. Int. 2019, 45, 17103–17113. [Google Scholar] [CrossRef]
- Liying, Y.; Zuomin, L. Microstructure and Mechanical Properties of Ti-48Al-2Nb-2Cr Matrix High Temperature Self-Lubricating Composites by Addition of 38% CaF2-62% BaF2 Eutectic Solid Lubricants. J. Compos. Mater. 2007, 41, 3079–3089. [Google Scholar] [CrossRef]
- Liu, W.G.; Liu, X.B.; Zhang, Z.G.; Guo, J. Development and Characterization of Composite Ni-Cr-C-CaF2 Laser Cladding on γ-TiAl Intermetallic Alloy. J. Alloys Compd. 2009, 470, 25–28. [Google Scholar] [CrossRef]
- Zhang, X.-f; Zhang, X.-l.; Wang, A.-h.; Huang, Z.-w. Microstructure and Properties of HVOF Sprayed Ni-Based Submicron WS2/CaF2 Self-Lubricating Composite Coating. Trans. Nonferr. Met. Soc. China Engl. Ed. 2009, 19, 85–92. [Google Scholar] [CrossRef]
- Fillot, N.; Iordanoff, I.; Berthier, Y. Wear Modeling and the Third Body Concept. Wear 2007, 262, 949–957. [Google Scholar] [CrossRef]
- Arnaud, P.; Fouvry, S. Modeling the Fretting Fatigue Endurance from Partial to Gross Slip: The Effect of Debris Layer. Tribol. Int. 2020, 143, 106069. [Google Scholar] [CrossRef]
- Arnaud, P.; Fouvry, S. A Dynamical FEA Fretting Wear Modeling Taking into Account the Evolution of Debris Layer. Wear 2018, 412–413, 92–108. [Google Scholar] [CrossRef]
- Arteaga-Hernandez, L.A.; Cuao-Moreu, C.A.; Gonzalez-Rivera, C.E.; Alvarez-Vera, M.; Ortega-Saenz, J.A.; Hernandez-Rodriguez, M.A.L. Study of Boriding Surface Treatment in the Tribological Behavior of an AISI 316L Stainless Steel. Wear 2021, 477, 203825. [Google Scholar] [CrossRef]
Material | Ni | Cr | Mo | Nb + Ta | Fe | C | Mn | Si | S | Al | Ti | P | Co |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Inconel ®625 | balance | 22 | 8.6 | 3.6 | 4.1 | 0.03 | 0.06 | 0.02 | 0.001 | 0.2 | 0.2 | 0.005 | 0.13 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kotkowiak, M.; Piasecki, A.; Kotkowiak, M.; Buchwald, T. The Mechanism of Wear Reduction in the Ni-CaF2 Composite Material: Raman and Confocal Microscopy Insights. Materials 2022, 15, 5501. https://doi.org/10.3390/ma15165501
Kotkowiak M, Piasecki A, Kotkowiak M, Buchwald T. The Mechanism of Wear Reduction in the Ni-CaF2 Composite Material: Raman and Confocal Microscopy Insights. Materials. 2022; 15(16):5501. https://doi.org/10.3390/ma15165501
Chicago/Turabian StyleKotkowiak, Mateusz, Adam Piasecki, Michał Kotkowiak, and Tomasz Buchwald. 2022. "The Mechanism of Wear Reduction in the Ni-CaF2 Composite Material: Raman and Confocal Microscopy Insights" Materials 15, no. 16: 5501. https://doi.org/10.3390/ma15165501
APA StyleKotkowiak, M., Piasecki, A., Kotkowiak, M., & Buchwald, T. (2022). The Mechanism of Wear Reduction in the Ni-CaF2 Composite Material: Raman and Confocal Microscopy Insights. Materials, 15(16), 5501. https://doi.org/10.3390/ma15165501