Candle Soot-Based Electrosprayed Superhydrophobic Coatings for Self-Cleaning, Anti-Corrosion and Oil/Water Separation
Abstract
:1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mulay, M.R.; Chauhan, A.; Patel, S. Viswanath Balakrishnan, Aditi Halder, Rahul Vaish, Candle soot: Journey from a pollutant to a functional material. Carbon 2019, 144, 684–712. [Google Scholar] [CrossRef]
- Deng, X.; Mammen, L.; Butt, H.; Vollmer, D. Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating. Science 2012, 335, 67–70. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Ye, T.; Mao, C. Fluorescent Carbon Nanoparticles Derived from Candle Soot. Angew. Int. Ed. 2007, 46, 6473–6475. [Google Scholar] [CrossRef] [PubMed]
- Liang, C.; Liao, J.; Li, A.; Chen, C.; Lin, H.; Wang, X.; Xu, Y. Relationship between wettabilities and chemical compositions of candle soots. Fuel 2014, 128, 422–427. [Google Scholar] [CrossRef]
- Zuberi, B.; Johnson, K.S.; Aleks, G.K.; Molina, L.T.; Laskin, A. Hydrophilic properties of aged soot. Geophys. Res. Lett. 2005, 32, L01807. [Google Scholar] [CrossRef]
- Zhang, B.; Duan, J.; Huang, Y.; Hou, B. Double layered superhydrophobic PDMS-Candle soot coating with durable corrosion resistance and thermal-mechanical robustness. J. Mater. Sci. Technol. 2021, 71, 1–11. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, X.; Chen, Q.; Pan, Y.; Liu, C.; Shen, C. A simple superhydrophobic/superhydrophilic Janus-paper with enhanced biocompatibility by PDMS and candle soot coating for actuator. Chem. Eng. J. 2021, 406, 126532. [Google Scholar] [CrossRef]
- Iqbal, R.; Majhy, B.; Sen, A.K. Facile Fabrication and Characterization of a PDMS-Derived Candle Soot Coated Stable Biocompatible Superhydrophobic and Superhemophobic Surface. ACS Appl. Mater. Interfaces 2017, 9, 31170–31180. [Google Scholar] [CrossRef]
- Seo, K.; Kim, M.; Kim, D.H. Candle-based process for creating a stable superhydrophobic surface. Carbon 2014, 68, 583–596. [Google Scholar] [CrossRef]
- Cao, H.; Fu, J.; Liu, Y.; Chen, S. Facile design of superhydrophobic and superoleophilic copper mesh assisted by candle soot for oil water separation. Colloids Surf. A Physicochem. Eng. Asp. 2018, 537, 294–302. [Google Scholar] [CrossRef]
- Zhang, J.; Rosenkranz, A.; Zhang, J.; Guo, J.; Li, X.; Chen, X.; Xiao, J.; Xu, J. Modified wettability of micro-structured steel surfaces fabricated by elliptical vibration diamond cutting. Int. J. Precis. Eng. Manuf.-Green Technol. 2021, 1–11. [Google Scholar] [CrossRef]
- Barraza, B.; Olate-Moya, F.; Montecinos, G.; Ortega, J.H.; Rosenkranz, A.; Tamburrino, A.; Palza, H. Superhydrophobic SLA 3D printed materials modified with nanoparticles biomimicking the hierarchical structure of a rice leaf. Sci. Technol. Adv. Mater. 2022, 23, 300–321. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Du, Y.; Alsaid, Y.; Wu, D.; Hua, M.; Yan, Y.; Yao, B.; Ma, Y.; Zhu, X.; He, X. Superhydrophobic photothermal icephobic surfaces based on candle soot. Proc. Natl. Acad. Sci. USA 2020, 117, 11240–11246. [Google Scholar] [CrossRef]
- Zhang, X.; Pan, Y.; Gao, Q.; Zhao, J.; Wang, Y.; Liu, C.; Shen, C.; Liu, X. Facile fabrication of durable superhydrophobic mesh via candle soot for oil-water separation. Prog. Org. Coat. 2019, 136, 105253. [Google Scholar] [CrossRef]
- Sutar, R.S.; Latthe, S.S.; Nagappan, S.; Ha, C.; Sadasivuni, K.K.; Liu, S.; Xing, R.; Bhosale, A.K. Fabrication of robust self-cleaning superhydrophobic coating by deposition of polymer layer on candle soot surface. J. Appl. Polym. Sci. 2021, 138, 49943. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Li, D.; Tian, H.; Zha, F.; Feng, H.; Guo, L. Smart candle soot coated membranes for on-demand immiscible oil/water mixture and emulsion switchable separation. Nanoscale 2017, 9, 13610–13617. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, B.N.; Balasubramanian, K. Facile synthesis of nano cauliflower and nano broccoli like hierarchical superhydrophobic composite coating using PVDF/carbon soot particles via gelation technique. J. Colloid Interface Sci. 2014, 436, 111–121. [Google Scholar] [CrossRef]
- Lei, T.; Xiong, J.; Huang, J.; Zheng, T.; Cai, X. Facile transformation of soot nanoparticles into nanoporous fibers via single-step electrospinning. AIP Adv. 2017, 7, 085212. [Google Scholar] [CrossRef][Green Version]
- Sutar, R.S.; Latthe, S.S.; Sargar, A.M.; Patil, C.E.; Jadhav, V.S.; Patil, A.N.; Kokate, K.K.; Bhosale, A.K.; Sadasivuni, K.K.; Mohite, S.V.; et al. Spray Deposition of PDMS/Candle Soot NPs Composite for Self-Cleaning Superhydrophobic Coating. Macromol. Symp. 2020, 393, 2000031. [Google Scholar] [CrossRef]
- Lin, J.; Lin, F.; Liu, R.; Li, P.; Fang, S.; Ye, W.; Zhao, S. Scalable fabrication of robust superhydrophobic membranes by one-step spray-coating for gravitational water-in-oil emulsion separation. Sep. Purif. Technol. 2020, 231, 115898. [Google Scholar] [CrossRef]
- Jaworek, A. Micro- and nanoparticle production by electrospraying. Powder Technol. 2007, 176, 18–35. [Google Scholar] [CrossRef]
- He, T.; Jokerst, J.V. Structured micro/nano materials synthesized via electrospray: A review. Biomater. Sci. 2020, 8, 5555–5573. [Google Scholar] [CrossRef] [PubMed]
- Kelder, E.; Nijs, O.; Schoonman, J. Low-temperature synthesis of thin films of YSZ and BaCeO3 using electrostatic spray pyrolysis (ESP). Solid State Ion. 1994, 68, 5–7. [Google Scholar] [CrossRef]
- Kourtchev, I.; Szeto, P.; O’connor, I.; Popoola, O.A.M.; Maenhaut, W.; Wenger, J.; Kalberer, M. Comparison of Heated Electrospray Ionization and Nanoelectrospray Ionization Sources Coupled to Ultra-High-Resolution Mass Spectrometry for Analysis of Highly Complex Atmospheric Aerosol Samples. Anal. Chem. 2020, 92, 8396–8403. [Google Scholar] [CrossRef] [PubMed]
- Mirza, U.A.; Cohen, S.L.; Chait, B.T. Heat-induced conformational changes in proteins studied by electrospray ionization mass spectrometry. Anal. Chem. 1993, 65, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Surib, N.A.; MohdPaad, K. Electrospray flow rate influenced the sized of functionalized soot nanoparticles. Asia-Pac. J. Chem. Eng. 2020, 15, e2417. [Google Scholar] [CrossRef]
- Faizal, F.; Khairunnisa, M.P.; Yokote, S.; Lenggoro, I.W. Carbonaceous nanoparticle layers prepared using candle soot by direct-and spray-based depositions. Aerosol Air Qual. Res. 2018, 18, 856–865. [Google Scholar] [CrossRef]
- Lei, T.; Lu, D.; Xu, Z.; Xu, W.; Liu, J.; Deng, X.; Huang, J.; Xu, L.; Cai, X.; Lin, L. 2D→3D conversion of superwetting mesh: A simple but powerful strategy for effective and efficient oil/water separation. Sep. Purif. Technol. 2020, 242, 116244. [Google Scholar] [CrossRef]
- Wang, H.; Tay, S.W.; Hong, R.S.; Pallathadka, P.K.; Hong, L. From the solvothermally treated poly (vinylidenefluoride) colloidal suspension to sticky hydrophobic coating. Colloid Polym. Sci. 2014, 292, 807–815. [Google Scholar] [CrossRef]
- Yoon, H.; Kim, H.; Latthe, S.S.; Kim, M.; Al-Deyab, S.; Yoon, S.S. A highly transparent self-cleaning superhydrophobic surface by organosilane-coated alumina particles deposited via electrospraying. J. Mater. Chem. A 2015, 3, 11403–11410. [Google Scholar] [CrossRef]
- Rahman, M.; Phung, T.H.; Oh, S.; Kim, S.H.; Ng, T.N.; Kwon, K. High-Efficiency Electrospray Deposition Method for Nonconductive Substrates: Applications of Superhydrophobic Coatings. ACS Appl. Mater. Interfaces 2021, 13, 18227–18236. [Google Scholar] [CrossRef] [PubMed]
- Lei, L.; Kovacevich, D.A.; Nitzsche, M.P.; Ryu, J.; Al-Marzoki, K.; Rodriguez, G.; Klein, L.C.; Jitianu, A.; Singer, J.P. Obtaining Thickness-Limited Electrospray Deposition for 3D Coating. ACS Appl. Mater. Interfaces 2018, 10, 11175–11188. [Google Scholar] [CrossRef] [PubMed]
- Cai, X.; Huang, J.; Lu, X.; Yang, L.; Lin, T.; Lei, T. Facile Preparation of Superhydrophobic Membrane Inspired by Chinese Traditional Hand-Stretched Noodles. Coatings 2021, 11, 228. [Google Scholar] [CrossRef]
- Li, J.; Li, D.; Yang, Y.; Li, J.; Zha, F.; Lei, Z. A prewetting induced underwater superoleophobic or underoil (super) hydrophobic waste potato residue-coated mesh for selective efficient oil/water separation. Green Chem. 2016, 18, 541–549. [Google Scholar] [CrossRef]
- Gao, H.; Liu, Y.; Wang, G.; Li, S.; Han, Z.; Ren, L. Switchable Wettability Surface with Chemical Stability and Antifouling Properties for Controllable Oil–Water Separation. Langmuir 2019, 35, 4498–4508. [Google Scholar] [CrossRef]
- Cassie, A.B.D. Skyler Baxter, Wettability of porous surfaces. Trans. Faraday Soc. 1944, 40, 546–551. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Lei, T.; Li, S.; Cai, X.; Hu, Z.; Wu, W.; Lin, T. Candle Soot-Based Electrosprayed Superhydrophobic Coatings for Self-Cleaning, Anti-Corrosion and Oil/Water Separation. Materials 2022, 15, 5300. https://doi.org/10.3390/ma15155300
Zhang Y, Lei T, Li S, Cai X, Hu Z, Wu W, Lin T. Candle Soot-Based Electrosprayed Superhydrophobic Coatings for Self-Cleaning, Anti-Corrosion and Oil/Water Separation. Materials. 2022; 15(15):5300. https://doi.org/10.3390/ma15155300
Chicago/Turabian StyleZhang, Yuting, Tingping Lei, Shuangmin Li, Xiaomei Cai, Zhiyuan Hu, Weibin Wu, and Tianliang Lin. 2022. "Candle Soot-Based Electrosprayed Superhydrophobic Coatings for Self-Cleaning, Anti-Corrosion and Oil/Water Separation" Materials 15, no. 15: 5300. https://doi.org/10.3390/ma15155300