Fracture of Lithia Disilicate Ceramics under Different Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Design
2.3. pH Corrosion Test
2.4. Chewing Simulation Test
2.5. Biaxial Flexural Strength
2.6. SEM Analysis
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esquivel-Upshaw, J.F.; Dieng, F.Y.; Clark, A.E.; Neal, D.; Anusavice, K.J. Surface Degradation of Dental Ceramics as a Function of Environmental pH. J. Dent. Res. 2013, 92, 467–471. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel-Upshaw, J.F.; Ren, F.; Hsu, S.M.; Dieng, F.Y.; Neal, D.; Clark, A.E. Novel Testing for Corrosion of Glass-Ceramics for Dental Applications. J. Dent. Res. 2018, 97, 296–302. [Google Scholar] [CrossRef]
- Drummond, J.L.; Novickas, D.; Lenke, J.W. Physiological aging of an all-ceramic restorative material. Dent. Mater. 1991, 7, 133–137. [Google Scholar] [CrossRef]
- Pinto, M.M.; Cesar, P.F.; Rosa, V.; Yoshimura, H.N. Influence of pH on slow crack growth of dental porcelains. Dent. Mater. 2008, 24, 814–823. [Google Scholar] [CrossRef]
- Milleding, P.; Gerdes, S.; Holmberg, K.; Karlsson, S. Surface energy of non-corroded and corroded dental ceramic materials before and after contact with salivary proteins. Eur. J. Oral Sci. 1999, 107, 384–392. [Google Scholar] [CrossRef]
- Sailer, I.; Pjetursson, B.E.; Zwahlen, M.; Hammerle, C.H. A systematic review of the survival and complication rates of all-ceramic and metal-ceramic reconstructions after an observation period of at least 3 years. Part II: Fixed dental prostheses. Clin. Oral Implant. Res. 2007, 18 (Suppl. 3), 86–96. [Google Scholar] [CrossRef]
- Sailer, I.; Zembic, A.; Jung, R.E.; Siegenthaler, D.; Holderegger, C.; Hammerle, C.H. Randomized controlled clinical trial of customized zirconia and titanium implant abutments for canine and posterior single-tooth implant reconstructions: Preliminary results at 1 year of function. Clin. Oral Implant. Res. 2009, 20, 219–225. [Google Scholar] [CrossRef] [Green Version]
- Schley, J.S.; Heussen, N.; Reich, S.; Fischer, J.; Haselhuhn, K.; Wolfart, S. Survival probability of zirconia-based fixed dental prostheses up to 5 yr: A systematic review of the literature. Eur. J. Oral Sci. 2010, 118, 443–450. [Google Scholar] [CrossRef]
- Heintze, S.D.; Rousson, V. Survival of zirconia- and metal-supported fixed dental prostheses: A systematic review. Int. J. Prosthodont. 2010, 23, 493–502. [Google Scholar]
- Nejatidanesh, F.; Moradpoor, H.; Savabi, O. Clinical outcomes of zirconia-based implant- and tooth-supported single crowns. Clin. Oral Investig. 2016, 20, 169–178. [Google Scholar] [CrossRef]
- Guncu, M.B.; Cakan, U.; Muhtarogullari, M.; Canay, S. Zirconia-based crowns up to 5 years in function: A retrospective clinical study and evaluation of prosthetic restorations and failures. Int. J. Prosthodont. 2015, 28, 152–157. [Google Scholar] [CrossRef] [PubMed]
- Le, M.; Papia, E.; Larsson, C. The clinical success of tooth- and implant-supported zirconia-based fixed dental prostheses. A systematic review. J. Oral Rehabil. 2015, 42, 467–480. [Google Scholar] [CrossRef] [PubMed]
- Esquivel-Upshaw, J.F.; Clark, A.E.; Shuster, J.J.; Anusavice, K.J. Randomized clinical trial of implant-supported ceramic-ceramic and metal-ceramic fixed dental prostheses: Preliminary results. J. Prosthodont. 2014, 23, 73–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Esquivel-Upshaw, J.F.; Mehler, A.; Clark, A.E.; Neal, D.; Anusavice, K.J. Fracture analysis of randomized implant-supported fixed dental prostheses. J. Dent. 2014, 42, 1335–1342. [Google Scholar] [CrossRef] [Green Version]
- Esquivel-Upshaw, J.; Kim, M.; Clark, A.E.; Neal, D.; Anusavice, K.J. In Vivo Wear of Glass-Ceramic Veneers for Metal-Ceramic and Ceramic-Ceramic Implant-Supported Prostheses. J. Dent. Res. 2015, 94A, 3702. [Google Scholar]
- ISO 6872:2015; Dentistry-Ceramic Materials. International Organization for Standardization: Geneva, Switzerland, 2015.
- Quinn, J.B.; Quinn, G.D. A Practical and Systematic Review of Weibull statistics for reporting strengths of dental materials. Dent. Mater. 2010, 26, 135–147. [Google Scholar] [CrossRef] [Green Version]
- Hsu, S.-M.; Ren, F.; Batich, C.D.; Clark, A.E.; Neal, D.; Esquivel-Upshaw, J.F. Effect of pH Cycling Frequency on Glass-Ceramic Corrosion. Materials 2020, 13, 3655. [Google Scholar] [CrossRef]
- Choi, G.; Horibe, S. Static fatigue in ceramic materials: Influences of an intergranular glassy phase and fracture toughness. J. Mater. Sci. 1993, 28, 5931–5936. [Google Scholar] [CrossRef]
- Wiederhorn, S. A chemical interpretation of static fatigue. J. Am. Ceram. Soc. 1972, 55, 81–85. [Google Scholar] [CrossRef]
- Barchetta, N.F.; Amaral, M.; Prochnow, C.; Rodrigues, F.P.; Bottino, M.A.; Valandro, L.F.; de Melo, R.M. Strength of a Zirconia-Reinforced Lithium Silicate Ceramic: Acid-Etching Time and Resin Cement Application Effects. Int. J. Periodontics Restor. Dent. 2019, 39, 431–437. [Google Scholar] [CrossRef]
- Esquivel-Upshaw, J.F.; Mecholsky, J.J.; Clark, A.E.; Jenkins, R.; Hsu, S.M.; Neal, D.; Ren, F. Factors influencing the survival of implant-supported ceramic-ceramic prostheses: A randomized, controlled clinical trial. J. Dent. X 2020, 3, 100017. [Google Scholar] [CrossRef]
- Mecholsky, J.J.; Hsu, S.M.; Jadaan, O.; Griggs, J.; Neal, D.; Clark, A.E.; Xia, X.; Esquivel-Upshaw, J.F. Forensic and reliability analyses of fixed dental prostheses. J. Biomed. Mater. Res. B Appl. Biomater. 2021, 109, 1360–1368. [Google Scholar] [CrossRef]
Vertical Ascending Speed (mm/s) | 60 |
Vertical descending speed (mm/s) | 60 |
Vertical ascending movement (mm) | 2 |
Vertical descending movement (mm) | 1 |
Horizontal speed (mm/s) | 40 |
Horizontal movement (mm) | 0.7 |
Loading force per sample (N) | 49 |
Cycle frequency (Hz) | 1.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Esquivel-Upshaw, J.F.; Hsu, S.-M.; Ren, F.; Stephany, J.; Xia, X.; Chiu, C.-W.; Neal, D.; Mecholsky, J.J., Jr. Fracture of Lithia Disilicate Ceramics under Different Environmental Conditions. Materials 2022, 15, 5261. https://doi.org/10.3390/ma15155261
Esquivel-Upshaw JF, Hsu S-M, Ren F, Stephany J, Xia X, Chiu C-W, Neal D, Mecholsky JJ Jr. Fracture of Lithia Disilicate Ceramics under Different Environmental Conditions. Materials. 2022; 15(15):5261. https://doi.org/10.3390/ma15155261
Chicago/Turabian StyleEsquivel-Upshaw, Josephine F., Shu-Min Hsu, Fan Ren, Jenna Stephany, Xinyi Xia, Chan-Wen Chiu, Dan Neal, and John J. Mecholsky, Jr. 2022. "Fracture of Lithia Disilicate Ceramics under Different Environmental Conditions" Materials 15, no. 15: 5261. https://doi.org/10.3390/ma15155261
APA StyleEsquivel-Upshaw, J. F., Hsu, S.-M., Ren, F., Stephany, J., Xia, X., Chiu, C.-W., Neal, D., & Mecholsky, J. J., Jr. (2022). Fracture of Lithia Disilicate Ceramics under Different Environmental Conditions. Materials, 15(15), 5261. https://doi.org/10.3390/ma15155261