Electric-Field-Coupled Resonator Antenna for 5G Applications
Abstract
:1. Introduction
2. Antenna Design and Analysis
3. Modelling of the ELC Resonator
4. Performance Analysis of the ELC Antenna
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Al-Bawri, S.S.; Jamlos, M.F.; Soh, P.J.; Aljunid Syed Junid, S.A.; Jamlos, M.A.; Narbudowicz, A. Multiband Slot-Loaded Dipole Antenna for WLAN and LTE-A Applications. IET Microw. Antennas Propag. 2018, 12, 63–68. [Google Scholar] [CrossRef]
- Mao, C.X.; Khalily, M.; Zhang, L.; Xiao, P.; Sun, Y.; Werner, D.H. Compact Patch Antenna with Vertical Polarization and Omnidirectional Radiation Characteristics. IEEE Trans. Antennas Propag. 2021, 69, 1158–1161. [Google Scholar] [CrossRef]
- Rajeshkumar, V.; Rengasamy, R.; Naidu, P.V.; Kumar, A. A Compact Meta-Atom Loaded Asymmetric Coplanar Strip-Fed Monopole Antenna for Multiband Operation. AEU-Int. J. Electron. Commun. 2019, 98, 241–247. [Google Scholar] [CrossRef]
- Nguyen, M.T.; Lin, Y.F.; Chang, C.H.; Chen, C.H.; Chen, H.M. Compact Shorted C-Shaped Patch Antenna for Ultrahigh Frequency Radio Frequency Identification Tags Mounted on a Metallic Plate. Int. J. RF Microw. Comput.-Aided Eng. 2021, 31, e22595. [Google Scholar] [CrossRef]
- Yuan, J.; Zheng, J.; Chen, Z.D. A Compact Meandered Ring Antenna Loaded with Parasitic Patches and a Slotted Ground for Global Navigation Satellite Systems. IEEE Trans. Antennas Propag. 2018, 66, 6835–6843. [Google Scholar] [CrossRef]
- Arif, A.; Zubair, M.; Ali, M.; Khan, M.U.; Mehmood, M.Q. A Compact, Low-Profile Fractal Antenna for Wearable On-Body WBAN Applications. IEEE Antennas Wirel. Propag. Lett. 2019, 18, 981–985. [Google Scholar] [CrossRef]
- Mark, R.; Mishra, N.; Mandal, K.; Sarkar, P.P.; Das, S. Hexagonal Ring Fractal Antenna with Dumb Bell Shaped Defected Ground Structure for Multiband Wireless Applications. AEU-Int. J. Electron. Commun. 2018, 94, 42–50. [Google Scholar] [CrossRef]
- Zada, M.; Yoo, H. A Miniaturized Triple-Band Implantable Antenna System for Bio-Telemetry Applications. IEEE Trans. Antennas Propag. 2018, 66, 7378–7382. [Google Scholar] [CrossRef]
- Abbas, N.; Basir, A.; Iqbal, A.; Yousaf, M.; Akram, A.; Yoo, H. Ultra-Miniaturized Antenna for Deeply Implanted Biomedical Devices. IEEE Access 2022, 10, 54563–54571. [Google Scholar] [CrossRef]
- Talukder, M.S.; Samsuzzaman, M.; Islam, M.T.; Azim, R.; Mahmud, M.Z.; Islam, M.T. Compact Ellipse Shaped Patch with Ground Slotted Broadband Monopole Patch Antenna for Head Imaging Applications. Chin. J. Phys. 2021, 72, 310–326. [Google Scholar] [CrossRef]
- Chinnagurusamy, B.; Perumalsamy, M.; Thankamony Sarasam, A.S. Design and Fabrication of Compact Triangular Multiband Microstrip Patch Antenna for C- and X-Band Applications. Int. J. Commun. Syst. 2021, 34, e4939. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.; Faruque, M.R.I.; Islam, M.T.; Khandaker, M.U. Electrically Compact SRR-Loaded Metamaterial Inspired Quad Band Antenna for Bluetooth/WiFi/WLAN/WiMAX System. Electronics 2019, 8, 790. [Google Scholar] [CrossRef] [Green Version]
- Thamil Selvi, N.; Thiruvalar Selvan, P.; Babu, S.P.K.; Pandeeswari, R. Multiband Metamaterial-Inspired Antenna Using Split Ring Resonator. Computers & Electrical Engineering 2020, 84, 106613. [Google Scholar] [CrossRef]
- Samson Daniel, R.; Pandeeswari, R.; Raghavan, S. Multiband Monopole Antenna Loaded with Complementary Split Ring Resonator and C-Shaped Slots. AEU-Int. J. Electron. Commun. 2017, 75, 8–14. [Google Scholar] [CrossRef]
- Samson Daniel, R.; Pandeeswari, R.; Raghavan, S. A Compact Metamaterial Loaded Monopole Antenna with Offset-Fed Microstrip Line for Wireless Applications. AEU-Int. J. Electron. Commun. 2018, 83, 88–94. [Google Scholar] [CrossRef]
- Kumar Naik, K. Asymmetric CPW-Fed SRR Patch Antenna for WLAN/WiMAX Applications. AEU-Int. J. Electron. Commun. 2018, 93, 103–108. [Google Scholar] [CrossRef]
- Ali, T.; Mohammad Saadh, A.W.; Biradar, R.C.; Anguera, J.; Andújar, A. A Miniaturized Metamaterial Slot Antenna for Wireless Applications. AEU-Int. J. Electron. Commun. 2017, 82, 368–382. [Google Scholar] [CrossRef]
- Mahendran, K.; Gayathri, D.R.; Sudarsan, H. Design of Multi Band Triangular Microstrip Patch Antenna with Triangular Split Ring Resonator for S Band, C Band and X Band Applications. Microprocessors and Microsystems 2021, 80, 103400. [Google Scholar] [CrossRef]
- Ameen, M.; Ahmad, O.; Chaudhary, R.K. Single Split-Ring Resonator Loaded Self-Decoupled Dual-Polarized MIMO Antenna for Mid-Band 5G and C-Band Applications. AEU-Int. J. Electron. Commun. 2020, 124, 153336. [Google Scholar] [CrossRef]
- Rinard, G.A.; Eaton, G.R. Loop-Gap Resonators. In Biomedical EPR, Part B: Methodology, Instrumentation, and Dynamics; Springer: Boston, MA, USA, 2005; pp. 19–52. [Google Scholar] [CrossRef]
- Zahertar, S.; Yalcinkaya, A.D.; Torun, H. Rectangular Split-Ring Resonators with Single-Split and Two-Splits under Different Excitations at Microwave Frequencies. AIP Adv. 2015, 5, 117220. [Google Scholar] [CrossRef] [Green Version]
- Holloway, C.L.; Love, D.C.; Kuester, E.F.; Salandrino, A.; Engheta, N. Sub-Wavelength Resonators: On the Use of Metafilms to Overcome the λ/2 Size Limit. IET Microw. Antennas Propag. 2008, 2, 120–129. [Google Scholar] [CrossRef]
- Baena, J.D.; Jelinek, L.; Marquás, R.; Zehentner, J. Electrically Small Isotropic Three-Dimensional Magnetic Resonators for Metamaterial Design. Appl. Phys. Lett. 2006, 88, 134108. [Google Scholar] [CrossRef]
- Pendry, J.B.; Holden, A.J.; Robbins, D.J.; Stewart, W.J. Magnetism from Conductors and Enhanced Nonlinear Phenomena. IEEE Trans. Microw. Theory Tech. 1999, 47, 2075–2084. [Google Scholar] [CrossRef] [Green Version]
- Schurig, D.; Mock, J.J.; Smith, D.R. Electric-Field-Coupled Resonators for Negative Permittivity Metamaterials. Appl. Phys. Lett. 2006, 88, 041109. [Google Scholar] [CrossRef] [Green Version]
Parameters | Values (mm) | Parameters | Values (mm) |
---|---|---|---|
L1 | 23 | W2 | 19 |
L2 | 13 | W3 | 12 |
L3 | 08 | W4 | 7.0 |
L4 | 09 | W5 | 4.6 |
L5 | 6.5 | W6 | 5.0 |
L6 | 3.0 | W7 | 2.5 |
L7 | 0.6 | W8 | 1.52 |
W1 | 23 |
References | Substrate εr | Antenna Size (Width mm × Length mm × Height mm) (λL at the Lowest Frequency) | Impedance Bandwidth (%) | Maximum Gain (dBi) |
---|---|---|---|---|
[2] | 3.55 | 40 × 40 (height not mentioned) (0.32 λL × 0.32 λL) | 2.44 | 1 |
[3] | 4.4 | 25 × 12.2 ×1.6 (0.1 λL × 0.2 λL × 0.013 λL) | 38.19 38.75 8.64 | 4.98 1.06 2.17 |
[5] | 4.4 | 50 × 50 × 0.6 (0.26 λL × 0.26 λL × 0.003 λL) | 3.15 | 3.13 |
[6] | 2.2 | 39 × 39 × 0.5 (0.31 λL × 0.31 λL × 0.004 λL) | 7.3 | 2.06 |
[7] | 4.4 | 32 × 40 × 1.6 (0.2 λL × 0.25 λL × 0.01 λL) | 10.64 7.4 15.62 40 | 1.6 2.15 2.75 3.8 |
[8] | 10.2 | 6 mm × 7 mm × 0.5 mm (0.018 λL × 0.021 λL × 0.002 λL) | 8.79 8.15 7.45 | −26.4 −23 −20.47 |
[13] | 4.4 | 40 × 40 × 0.8 (0.26 λL × 0.26 λL × 0.005 λL) | 22.42 5.83 6.97 11.76 4.14 17.92 | 1.5 6.5 1.75 2.88 4.05 2.38 |
[14] | 4.4 | 20 × 20 × 0.5 (0.11 λL × 0.11 λL × 0.003 λL) | 2.35 2.69 1.87 4.76 | 0.74 0.25 0.31 2.47 |
[15] | 4.4 | 19.18 × 22.64 × 1.6 (0.12 λL × 0.15 λL × 0.01 λL) | 2.55 3.12 8 | 1.36 1.57 1.83 |
[16] | 4.4 | 22 × 24 × 1.59 (0.18 λL × 0.19 λL × 0.013 λL) | 6.84 8.97 | 3.02 3.26 |
[17] | 4.4 | 24.8 × 30 × 1.6 (0.19 λL × 0.23 λL × 0.012 λL) | 6.87 5.71 9.17 5.38 5.42 | 2.3 2.2 2.8 2.9 3.3 |
Proposed Work | 2.2 | 23 × 23 × 1.52 (0.26 λL × 0.26 λL × 0.02 λL) | 19.71 | 1.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahman, M.M.; Islam, M.S.; Islam, M.T.; Alam, T. Electric-Field-Coupled Resonator Antenna for 5G Applications. Materials 2022, 15, 5247. https://doi.org/10.3390/ma15155247
Rahman MM, Islam MS, Islam MT, Alam T. Electric-Field-Coupled Resonator Antenna for 5G Applications. Materials. 2022; 15(15):5247. https://doi.org/10.3390/ma15155247
Chicago/Turabian StyleRahman, Md. Mushfiqur, Md. Shabiul Islam, Mohammad Tariqul Islam, and Touhidul Alam. 2022. "Electric-Field-Coupled Resonator Antenna for 5G Applications" Materials 15, no. 15: 5247. https://doi.org/10.3390/ma15155247
APA StyleRahman, M. M., Islam, M. S., Islam, M. T., & Alam, T. (2022). Electric-Field-Coupled Resonator Antenna for 5G Applications. Materials, 15(15), 5247. https://doi.org/10.3390/ma15155247