Impact of Salt on Thermal Stability and Dose Response of the Fricke-XO-Pluronic F-127 3D Radiotherapy Dosimeter
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Dosimeter
2.2. Thermal Stability Test 1
2.3. Thermal Stability Test 2
2.4. Irradiation
2.5. UV-Vis Spectrophotometry Measurements
2.6. Tissue Equivalence
3. Results and Discussion
3.1. Impact of NaCl on Thermal Stability
3.2. Temporal Stability of Fricke-XO-Pluronic F-127
3.3. Dose Response of Fricke-XO-Pluronic F-127 with NaCl
3.4. Tissue Equivalence of Fricke-XO-Pluronic F-127 Dosimeters
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gore, J.C.; Kang, Y.S.; Schultz, R.J. Measurement of radiation dose distributions by nuclear magnetic resonance (NMR) imaging. Phys. Med. Biol. 1984, 29, 1189–1197. [Google Scholar] [CrossRef] [PubMed]
- Gore, J.C.; Kang, Y.S.; Schultz, R.J. Measurement of radiation dose distributions by NMR imaging. Magn. Reson. Imaging 1984, 2, 244. [Google Scholar] [CrossRef]
- Bero, M.A.; Gilboy, W.B.; Glover, P.M. Radiochromic gel dosemeter for three-dimensional dosimetry Radiat. Phys. Chem. 2000, 61, 433–435. [Google Scholar]
- Jordan, K.; Battista, J. Dose response of ferrous- xylenol orange gels: The effects of gel substrate, gelation time and dose fractionation J. Phys: Conf. Ser. 2004, 3, 232. [Google Scholar] [CrossRef]
- Liosi, G.M.; Dondi, D.; Vander Griend, D.A.; Lazzaroni, S.; D’Agostino, G.; Mariani, M. Fricke-gel dosimeter: Overview of Xylenol Orange chemical behavior. Radiat. Phys. Chem. 2017, 140, 74–77. [Google Scholar] [CrossRef]
- Pappas, E.P.; Peppa, V.; Hourdakis, C.J.; Karaiskos, P.; Papagiannis, P. On the use of a novel Ferrous Xylenol-orange gelatin dosimeter for HDR brachytherapy commissioning and quality assurance testing. Phys. Med. 2018, 45, 162–169. [Google Scholar] [CrossRef] [PubMed]
- Jordan, K.; Sekimoto, M. Effects of adding glycerol and sucrose to ferrous xylenol orange hydrogel. J. Phys. Conf. Ser. 2010, 250, 012048. [Google Scholar] [CrossRef]
- Eyadeh, M.M.; Rabaeh, K.E.; Hailat, T.F.; Aldweri, F.M. Evaluation of ferrous Methylthymol Blue gelatin gel dosimeter using nuclear magnetic resonance and optical techniques Radiat. Measur. 2018, 108, 26–33. [Google Scholar] [CrossRef]
- Eyadeh, M.M.; Rabaeh, K.E.; Hailat, T.F.; Al-Shorman, M.Y.; Aldweri, F.M.; Kanan, H.M.; Awad, S.I. Investigation of a novel chemically cross-linked Fricke-Methythymol blue–synthetic polymer gel dosimeter with glutaraldehyde cross-linker. Radiat. Measur. 2018, 118, 77–85. [Google Scholar] [CrossRef]
- Scotti, M.; Arosio, P.; Brambilla, E.; Gallo, S.; Lenardi, C.; Locarno, S.; Orsini, F.; Pignoli, E.; Pedicone, L.; Veronese, I. How Xylenol Orange and Ferrous Ammonium Sulphate Influence the Dosimetric Properties of PVA–GTA Fricke Gel Dosimeters: A Spectrophotometric Study. Gels 2022, 8, 204. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.; Peace, S.; Rafic, K.; Raj, E.; Christopher, S.; Ravindran, P. Escalation of optical transmittance and determination of diffusion co-efficient in low-bloom strength gelatin-based Fricke gel dosimeters. Radiat. Phys. Chem. 2019, 156, 300–306. [Google Scholar] [CrossRef]
- Pérez, P.; Torres, P.R.; Bruna, A.; Brunetto, M.; Aon, E.; Franco, D.; Mattea, F.; Figueroa, R.; Santibáñez, M.; Valente, M. Fricke gel xylenol orange dosimeter layers for stereotactic radiosurgery: A preliminary approach. Appl. Radiat. Isot. 2021, 178, 109936. [Google Scholar] [CrossRef] [PubMed]
- Marrale, M.; Brai, M.; Gagliardo, C.; Gallo, S.; Longo, A.; Tranchina, L.; Abbate, B.; Collura, G.; Gallias, K.; Caputo, V.; et al. Correlation between ferrous ammonium sulfate concentration, sensitivity and stability of Fricke gel dosimeters exposed to clinical X-ray beams. Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 2014, 335, 54–60. [Google Scholar] [CrossRef]
- Gambarini, G.; Veronese, I.; Bettinelli, L.; Felisi, M.; Gargano, M.; Ludwig, N.; Lenardi, C.; Carrara, M.; Collura, G.; Gallo, S.; et al. Study of optical absorbance and MR relaxation of Fricke xylenol orange gel dosimeters. Radiat. Meas. 2017, 106, 622–627. [Google Scholar] [CrossRef]
- Gallo, S.; Pasquale, S.; Lenardi, C.; Veronese, I.; Gueli, A.M. Effect of ionizing radiation on the colorimetric properties of PVA-GTA Xylenol Orange Fricke gel dosimeters. Dye. Pigment. 2021, 187, 109141. [Google Scholar] [CrossRef]
- Marrale, M.; Collura, G.; Gallo, S.; Nici, S.; Tranchina, L.; Abbate, B.; Marineo, S.; Caracappa, S.; d’Errico, F. Analysis of spatial diffusion of ferric ions in PVA-GTA gel dosimeters analyzed via magnetic resonance imaging. Nucl. Instr. Meth. B 2017, 396, 50–55. [Google Scholar] [CrossRef]
- Lepage, M.; Jordan, K. 3D dosimetry fundamentals: Gels and plastics. J. Phys. Conf. Ser. 2010, 250, 012055. [Google Scholar] [CrossRef]
- Jaszczak, M.; Wach, R.; Maras, P.; Dudek, M.; Kozicki, M. Substituting gelatine with Pluronic F–127 matrix in 3D polymer gel dosimeters can improve nuclear magnetic resonance, thermal and optical properties. Phys. Med. Biol. 2018, 63, 175010. [Google Scholar] [CrossRef]
- Fong, P.M.; Keil, D.C.; Does, M.D.; Gore, J.C. Polymer gels for magnetic resonance imaging of radiation dose distributions at normal room atmosphere Phys. Med. Biol. 2001, 46, 3105–3113. [Google Scholar] [CrossRef]
- Fernandes, J.P.; Pastorello, B.F.; de Araújo, D.B.; Baffa, O. Formaldehyde increases MAGIC gel dosimeter melting point andsensitivity J. Phys. Conf. Ser. 2009, 164, 012004. [Google Scholar] [CrossRef]
- Songur, A.; Ozen, O.A.; Sarsilmaz, M. The toxic effects of formaldehyde on the nervous system Rev. Environ. Contam. Toxicol. 2010, 203, 105–118. [Google Scholar]
- Abtahi, S.M.; Zahmatkesh, M.H.; Khalafi, H. Investigation of an improved MAA-based polymer gel for thermal neutron dosimetry J. Radioanal. Nucl. Chem. 2016, 307, 855–868. [Google Scholar] [CrossRef]
- Dudek, M.; Piotrowski, M.; Maras, P.; Jaszczak, M.; Kozicki, M. Anisotropic diffusion of Fe ions in Fricke-XO-Pluronic F-127 and Fricke-XO-gelatine 3D radiotherapy dosimeters. Phys. Med. Biol. 2021, 66, 155005. [Google Scholar] [CrossRef]
- Piotrowski, M.; Maras, P.; Kadłubowski, S.; Kozicki, M. Study of the Optimal Composition and Storage Conditions of the Fricke–XO–Pluronic F–127 Radiochromic Dosimeter. Materials 2022, 15, 984. [Google Scholar] [CrossRef]
- Almeida, H.; Amaral, M.H.; Lobão, P.; Lobo, J.M.S. Pluronic F-127 and Pluronic lecithin organogel (PLO): Main features and their applications in topical and transdermal administration of drugs. J. Pharm. Pharm. Sci. 2012, 15, 592–605. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Diniz, I.M.; Chen, C.; Xu, X.; Ansari, S.; Zadeh, H.H.; Marques, M.M.; Shi, S.; Moshaverinia, A. Pluronic F-127 hydrogel as a promising scaffold for encapsulation of dental-derived mesenchymal stem cells. J. Mater. Sci. Mater. Med. 2015, 26, 153. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alexandridis, P.; Hatton, T.A. Poly(ethylene oxide)-poly(propylene oxide )-poly (ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: Thermodynamics, structure, dynamics, and modeling Colloids Surf. A 1995, 96, 1–46. [Google Scholar] [CrossRef]
- Kozicki, M.; Jaszczak, M.; Maras, P.; Naglik, R.; Dudek, M.; Kadlubowski, S.; Wach, R. Preliminary study on a 3D lung mimicking dosimeter based on Pluronic F–127 matrix. Radiat. Phys. Chem. 2021, 185, 109479. [Google Scholar] [CrossRef]
- Kolthoff, I.M.; Medalia, A.I.; The reaction between Ferroues Iron and Peroxides. Reaction with hydrogen peroxide in the presence of oxygen. J. Amer. Chem. Soc. 1949, 71, 3784. [Google Scholar] [CrossRef]
- Dewhurst, H.A. Effect of organic substances on the γ-ray oxidation of aerated aqueous ferrous sulphate. J. Chem. Phys. 1951, 19, 1329. [Google Scholar] [CrossRef]
- Jayson, G.G.; Parsons, B.J.; Swallow, A.J. Some simple, highly reactive, inorganic chlorine derivatives in aqueous solution, their formation using pulses of radiation and their role in the mechanism of the Fricke dosimeter. J. Chem. Soc. Faraday Trans. 1973, 69, 1597–1607. [Google Scholar] [CrossRef]
- Klassen, N.V.; Shortt, K.R.; Seuntjens, J.; Ross, C.K. Fricke dosimetry: The difference between G(Fe3+) for 60Co γ-rays and high-energy x-rays. Phys. Med. Biol. 1999, 44, 1609–1624. [Google Scholar] [CrossRef] [PubMed]
- Kozicki, M.; Kwiatos, K.; Kadlubowski, S.; Dudek, M. TTC-Pluronic 3D radiochromic gel dosimetry of ionising radiation. Phys. Med. Biol. 2017, 62, 5668–5690. [Google Scholar] [CrossRef] [PubMed]
- Pantelis, E.; Karlis, A.K.; Kozicki, M.; Papagiannis, P.; Sakelliou, L.; Rosiak, J.M. Polymer gel water equivalence and relative energy response with emphasis on low photon energy dosimetry in brachytherapy. Phys. Med. Biol. 2004, 49, 3495–3514. [Google Scholar] [CrossRef]
- Chu, K.C.; Jordan, K.J.; Battista, J.J.; Van Dyk, J.; Rutt, B.K. Polyvinyl alcohol-Fricke hydrogel and cryogel: Two new gel dosimetry systems with low Fe3+ diffusion. Phys. Med. Biol. 2000, 45, 955–969. [Google Scholar] [CrossRef] [PubMed]
- Schreiner, L.J. Review of Fricke gel dosimeters. J. Phys. Conf. Ser. 2004, 3, 9–21. [Google Scholar] [CrossRef]
- Del Lama, L.S.; Petchevist, P.C.D.; de Almeida, A. Fricke Xylenol Gel characterization at megavoltage radiation energy. Nucl. Instrum. Meth. B 2017, 394, 89–96. [Google Scholar] [CrossRef]
Tc [°C] | Tc on [°C] | ΔHc [J/g] | Th [°C] | ΔHh [J/g] | |
---|---|---|---|---|---|
Non-irradiated sample without NaCl | |||||
1 cooling/heating | 10.2 | 16.1 | 4.4 | 12.3 | 4.9 |
2 cooling/heating | 10.0 | 16.1 | 4.4 | 12.1 | 5.2 |
3 cooling | 8.8 | 15.2 | 4.3 | - | - |
Irradiated sample without NaCl | |||||
1 cooling/heating | 10.3 | 15.0 | 4.4 | 12.3 | 4.9 |
2 cooling/heating | 10.2 | 16.6 | 4.4 | 12.2 | 4.9 |
3 cooling | 9.3 | 15.8 | 4.3 | - | - |
Non-irradiated sample with 0.2 M NaCl | |||||
1 cooling/heating | 8.7 | 15.7 | 5.9 | 10.9 | 4.1 |
2 cooling/heating | 8.6 | 15.1 | 5.0 | 10.8 | 5.3 |
3 cooling | 7.9 | 14.3 | 4.5 | - | - |
Irradiated sample with 0.2 M NaCl | |||||
1 cooling/heating | 8.5 | 14.7 | 4.5 | 10.6 | 5.1 |
2 cooling/heating | 8.4 | 14.8 | 4.6 | 10.6 | 5.1 |
3 cooling | 7.4 | 13.9 | 4.8 | - | - |
Type of Radiation | Dose Range Examined [Gy] | Dose Sensitivity [Gy−1·cm−1] | R2 | Dose Sensitivity ** [Gy−1·cm−1] | Intercept ** | R2 |
---|---|---|---|---|---|---|
Electrons 12 MeV (Figure 7D) | 0–30 | 0.1580 ± 0.0035 | 0.997 | 0.0701 ± 0.0017 | 0.222 ± 0.025 | 0.997 |
Photons 6 MV (Figure 7B) Photons 6 MV (Figure 7C) | 0–10 0–20 0–25 0–30 | 0.1919 ± 0.0029 0.1932 ± 0.0018 0.1885 ± 0.0020 0.1797 ± 0.0009 | 0.997 0.999 0.998 0.999 | 0.0861 ± 0.0013 0.0844 ± 0.0099 0.0813 ± 0.0012 0.0787 ± 0.0004 | 0.259 ± 0.006 0.265 ± 0.008 0.277 ± 0.013 0.275 ± 0.006 | 0.998 0.998 0.997 0.999 |
Photons 10 MV FFF (Figure 7C) | 0–30 | 0.1670 ± 0.0016 | 0.999 | 0.0733 ± 0.0010 | 0.275 ± 0.015 | 0.999 |
Photons 15 MV (Figure 7C) | 0–30 | 0.1751 ± 0.0011 | 0.999 | 0.0763 ± 0.0007 | 0.275 ± 0.011 | 0.999 |
Elemental Composition [% by weight] | ρ [g/cm3] | <Z/A> | ρ × <Z/A> | Zeff | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
6C | 1H | 16O | 17Cl | 11Na | 16S | 7N | 26Fe | |||||
Fricke-XO-Pluronic F-127 | 14.23 | 10.72 | 74.80 | - | 5.63 × 10−3 | 0.17 | 0.02 | 0.04 | 1.040 ± 0.002 | 0.553 | 0.575 | 7.41 |
Fricke-XO-Pluronic F-127 + 0.2 NaCl | 14.23 | 10.63 | 74.04 | 0.52 | 0.34 | 0.17 | 0.02 | 0.04 | 1.042 ± 0.003 | 0.552 | 0.575 | 7.58 |
Water | - | 11.19 | 88.81 | - | - | - | 1.000 | 0.555 | 0.555 | 7.51 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Piotrowski, M.; Maras, P.; Wach, R.; Kadlubowski, S.; Kozicki, M. Impact of Salt on Thermal Stability and Dose Response of the Fricke-XO-Pluronic F-127 3D Radiotherapy Dosimeter. Materials 2022, 15, 5223. https://doi.org/10.3390/ma15155223
Piotrowski M, Maras P, Wach R, Kadlubowski S, Kozicki M. Impact of Salt on Thermal Stability and Dose Response of the Fricke-XO-Pluronic F-127 3D Radiotherapy Dosimeter. Materials. 2022; 15(15):5223. https://doi.org/10.3390/ma15155223
Chicago/Turabian StylePiotrowski, Michał, Piotr Maras, Radosław Wach, Slawomir Kadlubowski, and Marek Kozicki. 2022. "Impact of Salt on Thermal Stability and Dose Response of the Fricke-XO-Pluronic F-127 3D Radiotherapy Dosimeter" Materials 15, no. 15: 5223. https://doi.org/10.3390/ma15155223
APA StylePiotrowski, M., Maras, P., Wach, R., Kadlubowski, S., & Kozicki, M. (2022). Impact of Salt on Thermal Stability and Dose Response of the Fricke-XO-Pluronic F-127 3D Radiotherapy Dosimeter. Materials, 15(15), 5223. https://doi.org/10.3390/ma15155223