Experimental Study on Durability Degradation of Geopolymer-Stabilized Soil under Sulfate Erosion
Abstract
:1. Introduction
2. Materials and Test Program
2.1. Materials
2.2. Mix Proportions and Specimen Preparation
2.3. Test Methods
2.3.1. Mass Change Rate
2.3.2. Unconfined Compressive Strength (UCS) and Strength Retention Coefficient
2.3.3. Microscopic Examination
3. Results and Discussion
3.1. Appearance Change
3.2. Mass Change
3.3. Strength Development
3.4. Phase Analysis
3.5. Microstructure
4. Conclusions
- (1)
- The type of stabilizer is a key factor affecting the sulfate resistance of stabilized soil. Sulfates severely deteriorate cement-stabilized soil with time, even damaging its integrity. The mass of cement-stabilized soil shows a two-stage variation characteristic of an initial increase and then a decrease within 90 days. Specifically, the mass change rates of the cement-stabilized soil at 3 d, 7 d, 28 d, 60 d, and 90 d were +2.8%, +4.1%, −1.62%, −4.85%, and −7.76%, respectively. Geopolymer-stabilized soils show a slight erosion-deterioration phenomenon in a sulfate environment, and their masses generally show a slightly increasing trend (less than 1.82%).
- (2)
- The UCS of cement-stabilized soil increases gradually with its immersion time, and then it decreases sharply. The cement-stabilized soil obtains a maximum strength of 3.21 MPa at 7 d, while its strength is completely lost when immersed for 90 d. The slag-fly ash ratio has little effect on the strength development law of geopolymer-stabilized soil under a Na2SO4 solution environment, but it is an important factor affecting the sulfate resistance of stabilized soil. In contrast, G-2 with a slag-fly ash ratio of 9:1 has the most excellent sulfate resistance. When the erosion age is 90 d, the UCS value of G-2 is 7.13 MPa, and its strength retention coefficient is 86.6%.
- (3)
- After immersion in Na2SO4 solution for 60 d, a large amount of AFt (expansive crystal) is formed in the cement-stabilized soil. The expansion stress generated by AFt damages the soil structure, resulting in the gradual deterioration of the strength of the cement-stabilized soil until it is completely lost. The N-A-S-H gel in the geopolymer-stabilized soil enhances the bonding strength between soil particles, and its stable microstructure retards the intrusion of free sulfate ions into the stabilized soil.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, X.; Huang, Z.; Luo, X. An Improved Mechanistic-Empirical Creep Model for Unsaturated Soft and Stabilized Soils. Materials 2021, 14, 4146. [Google Scholar] [CrossRef] [PubMed]
- Vukićević, M.; Marjanović, M.; Pujević, V.; Jocković, S. The Alternatives to Traditional Materials for Subsoil Stabilization and Embankments. Materials 2019, 12, 3018. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feng, S.; Lei, H. A Settlement Prediction Model Considering Tidal Loading and Traffic Loading of Soft Soil Subgrade. Comput. Geotech. 2022, 144, 104639. [Google Scholar] [CrossRef]
- Shen, S.-L.; Atangana Njock, P.G.; Zhou, A.; Lyu, H.-M. Dynamic Prediction of Jet Grouted Column Diameter in Soft Soil Using Bi-LSTM Deep Learning. Acta. Geotech. 2021, 16, 303–315. [Google Scholar] [CrossRef]
- Liang, S.; Chen, J.; Guo, M.; Feng, D.; Liu, L.; Qi, T. Utilization of Pretreated Municipal Solid Waste Incineration Fly Ash for Cement-Stabilized Soil. Waste Manag. 2020, 105, 425–432. [Google Scholar] [CrossRef]
- Wang, F.; Li, K.; Liu, Y. Optimal Water-Cement Ratio of Cement-Stabilized Soil. Constr. Build. Mater. 2022, 320, 126211. [Google Scholar] [CrossRef]
- He, Z.; Zhu, X.; Wang, J.; Mu, M.; Wang, Y. Comparison of CO2 Emissions from OPC and Recycled Cement Production. Constr. Build. Mater. 2019, 211, 965–973. [Google Scholar] [CrossRef]
- Huseien, G.F.; Hamzah, H.K.; Sam, A.R.M.; Khalid, N.H.A.; Shah, K.W.; Deogrescu, D.P.; Mirza, J. Alkali-Activated Mortars Blended with Glass Bottle Waste Nano Powder: Environmental Benefit and Sustainability. J. Clean. Prod. 2020, 243, 118636. [Google Scholar] [CrossRef]
- Dey, D.; Srinivas, D.; Panda, B.; Suraneni, P.; Sitharam, T.G. Use of Industrial Waste Materials for 3D Printing of Sustainable Concrete: A Review. J. Clean. Prod. 2022, 340, 130749. [Google Scholar] [CrossRef]
- Parthiban, D.; Vijayan, D.S.; Koda, E.; Vaverkova, M.D.; Piechowicz, K.; Osinski, P.; Duc, B.V. Role of Industrial Based Precursors in the Stabilization of Weak Soils with Geopolymer—A Review. Case Stud. Constr. Mat. 2022, 16, e00886. [Google Scholar] [CrossRef]
- Rios, S.; Catarina, R.; Da Fonseca, A.V.; Cruz, N.; Rodrigues, C. Colombian Soil Stabilized with Geopolymers for Low Cost Roads. Procedia. Eng. 2016, 143, 1392–1400. [Google Scholar] [CrossRef] [Green Version]
- Rivera, J.F.; Orobio, A.; Cristelo, N.; Mejía de Gutiérrez, R. Fly Ash-Based Geopolymer as A4 Type Soil Stabiliser. Transp. Geotech. 2020, 25, 100409. [Google Scholar] [CrossRef]
- Zhang, B.; Zhu, H.; Cheng, Y.; Huseien, G.F.; Shah, K.W. Shrinkage Mechanisms and Shrinkage-Mitigating Strategies of Alkali-Activated Slag Composites: A Critical Review. Constr. Build. Mater. 2022, 318, 125993. [Google Scholar] [CrossRef]
- Azimi, E.A.; Abdullah, M.M.A.B.; Vizureanu, P.; Salleh, M.A.A.M.; Sandu, A.V.; Chaiprapa, J.; Yoriya, S.; Hussin, K.; Aziz, I.H. Strength Development and Elemental Distribution of Dolomite/Fly Ash Geopolymer Composite under Elevated Temperature. Materials 2020, 13, 1015. [Google Scholar] [CrossRef] [Green Version]
- Long, Z.; Tang, X.; Ding, Y.; Miljković, M.; Khanal, A.; Ma, W.; You, L.; Xu, F. Influence of Sea Salt on the Interfacial Adhesion of Bitumen-Aggregate Systems by Molecular Dynamics Simulation. Constr. Build. Mater. 2022, 336, 127471. [Google Scholar] [CrossRef]
- Long, Z.; Guo, N.; Tang, X.; Ding, Y.; You, L.; Xu, F. Microstructural Evolution of Asphalt Induced by Chloride Salt Erosion. Constr. Build. Mater. 2022, 343, 128056. [Google Scholar] [CrossRef]
- Long, Z.; You, L.; Tang, X.; Ma, W.; Ding, Y.; Xu, F. Analysis of Interfacial Adhesion Properties of Nano-Silica Modified Asphalt Mixtures Using Molecular Dynamics Simulation. Constr. Build. Mater. 2020, 255, 119354. [Google Scholar] [CrossRef]
- Yang, Q.; Du, C.; Zhang, J.; Yang, G. Influence of Silica Fume and Additives on Unconfined Compressive Strength of Cement-Stabilized Marine Soft Clay. J. Mater. Civil. Eng. 2020, 32, 04019346. [Google Scholar] [CrossRef]
- Kampala, A.; Jitsangiam, P.; Pimraksa, K.; Chindaprasirt, P. An Investigation of Sulfate Effects on Compaction Characteristics and Strength Development of Cement-Treated Sulfate Bearing Clay Subgrade. Road. Mater. Pavement. 2021, 22, 2396–2409. [Google Scholar] [CrossRef]
- Yang, J.; Yan, N.; Liu, Q.; Zhang, Y. Laboratory Test on Long-Term Deterioration of Cement Soil in Seawater Environment. Trans. Tianjin Univ. 2016, 22, 132–138. [Google Scholar] [CrossRef]
- Yu, B.; Du, Y.; Liu, C.; Bo, Y. Study of Durability of Reactive Magnesia-Activated Ground Granulated Blast-Furnace Slag Stabilized Soil Attacked by Sulfate Sodium Solution. Rock. Soil. Mech. 2015, 36, 64. (In Chinese) [Google Scholar]
- Furlan, A.P.; Razakamanantsoa, A.; Ranaivomanana, H.; Amiri, O.; Levacher, D.; Deneele, D. Effect of Fly Ash on Microstructural and Resistance Characteristics of Dredged Sediment Stabilized with Lime and Cement. Constr. Build. Mater. 2021, 272, 121637. [Google Scholar] [CrossRef]
- Horpibulsuk, S.; Rachan, R.; Raksachon, Y. Role of Fly Ash on Strength and Microstructure Development in Blended Cement Stabilized Silty Clay. Soils. Found. 2009, 49, 85–98. [Google Scholar] [CrossRef] [Green Version]
- Pokharel, B.; Siddiqua, S. Effect of Calcium Bentonite Clay and Fly Ash on the Stabilization of Organic Soil from Alberta, Canada. Eng. Geol. 2021, 293, 106291. [Google Scholar] [CrossRef]
- Zhang, W.; Zhao, L.; McCabe, B.A.; Chen, Y.; Morrison, L. Dredged Marine Sediments Stabilized/Solidified with Cement and GGBS: Factors Affecting Mechanical Behaviour and Leachability. Sci. Total Environ. 2020, 726, 138551. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Guo, H.; Yang, X.; Xing, H. Comparation Analyses of the Effects of Marine Soft Soil Improved by Portland Cement and Slag Cement. Rock. Soil. Mech. 2009, 30, 2737–2740. (In Chinese) [Google Scholar]
- Li, Q.; Chen, J.; Shi, Q. Macroscopic and Microscopic Mechanisms of Cement Stabilized Soft Clay Mixed with Seawater by Adding Ultrafine Silica FUME. Adv. Mater. Sci. Eng. 2014, 2014, 810652. [Google Scholar] [CrossRef] [Green Version]
- Bagheri, A.; Nazari, A.; Sanjayan, J.G.; Rajeev, P.; Duan, W. Fly Ash-Based Boroaluminosilicate Geopolymers: Experimental and Molecular Simulations. Ceram. Int. 2017, 43, 4119–4126. [Google Scholar] [CrossRef]
- Long, Z.; Tang, X.; Guo, N.; Ding, Y.; Ma, W.; You, L.; Xu, F. Atomistic-Scale Investigation of Self-Healing Mechanism in Nano-Silica Modified Asphalt through Molecular Dynamics Simulation. J. Infrastruct. Preserv. Resil. 2022, 3, 4. [Google Scholar] [CrossRef]
- Long, Z.; Zhou, S.; Jiang, S.; Ma, W.; Ding, Y.; You, L.; Tang, X.; Xu, F. Revealing Compatibility Mechanism of Nanosilica in Asphalt through Molecular Dynamics Simulation. J. Mol. Model. 2021, 27, 81. [Google Scholar] [CrossRef]
- Luo, Z.; Luo, B.; Zhao, Y.; Li, X.; Su, Y.; Huang, H.; Wang, Q. Experimental Investigation of Unconfifined Compression Strength and Microstructure Characteristics of Slag and Fly Ash-Based Geopolymer Stabilized Riverside Soft Soil. Polymers 2022, 14, 307. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Zhu, H.; Feng, P.; Zhang, P. A Review on Shrinkage-Reducing Methods and Mechanisms of Alkali-Activated/Geopolymer Systems: Effects of Chemical Additives. J. Build. Eng. 2022, 49, 104056. [Google Scholar] [CrossRef]
- Jiang, N.; Du, Y.; Liu, K. Durability of Lightweight Alkali-Activated Ground Granulated Blast Furnace Slag (GGBS) Stabilized Clayey Soils Subjected to Sulfate Attack. Appl. Clay. Sci. 2018, 161, 70–75. [Google Scholar] [CrossRef]
- Furlan, A.P.; Razakamanantsoa, A.; Ranaivomanana, H.; Levacher, D.; Katsumi, T. Shear Strength Performance of Marine Sediments Stabilized Using Cement, Lime and Fly Ash. Constr. Build. Mater. 2018, 184, 454–463. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.; Wu, J. Early Strength Development of Soft Clay Stabilized by One-Part Ground Granulated Blast Furnace Slag and Fly Ash-Based Geopolymer. Front. Mater. 2021, 8, 616430. [Google Scholar] [CrossRef]
- Heikal, M.; Zaki, M.E.A.; Alshammari, A. Preparation and Characterization of An Eco-Friendly Binder from Alkali-Activated Aluminosilicate Solid Industrial Wastes Containing CKD and GGBS. J. Mater. Civil Eng. 2018, 30, 04018093. [Google Scholar] [CrossRef]
Natural Moisture Content/% | Wet Density/g·cm−3 | Void Ratio | Liquid Limit/% | Plasticity Index | Cohesion/kPa | Internal Friction Angle/° | Compression Modulus/MPa |
---|---|---|---|---|---|---|---|
49.8 | 1.71 | 1.196 | 33.2 | 17 | 13.5 | 2.5 | 3.37 |
Raw Materials | CaO | SiO2 | Al2O3 | MgO | Fe2O3 | SO3 | Others | LOI | Specific Surface areas/m2·kg−1 |
---|---|---|---|---|---|---|---|---|---|
Cement | 56.43 | 19.55 | 5.63 | 3.54 | 2.96 | 2.83 | 9.06 | 2.08 | 342 |
Slag | 34.00 | 34.50 | 17.70 | 6.01 | 1.03 | 1.64 | 5.12 | 1.83 | 505 |
Fly ash | 3.23 | 49.04 | 27.4 | 0.86 | 1.53 | 1.15 | 16.79 | 2.36 | 935 |
Label | Cement Content/% | Geopolymer Content/% | Alkali Activator | Slag: Fly Ash | w/b | |
---|---|---|---|---|---|---|
Modulus | Content/% | |||||
C0 | 25 | - | - | - | - | 0.4 |
G-1 | - | 25 | 1.2 | 30 | 10:0 | 0.4 |
G-2 | - | 25 | 1.2 | 30 | 9:1 | 0.4 |
G-3 | - | 25 | 1.2 | 30 | 8:2 | 0.4 |
G-4 | - | 25 | 1.2 | 30 | 7:3 | 0.4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, G.; Chen, S.; Xia, M.; Zhong, W.; Han, X.; Luo, B.; Sabri, M.M.S.; Huang, J. Experimental Study on Durability Degradation of Geopolymer-Stabilized Soil under Sulfate Erosion. Materials 2022, 15, 5114. https://doi.org/10.3390/ma15155114
Wang G, Chen S, Xia M, Zhong W, Han X, Luo B, Sabri MMS, Huang J. Experimental Study on Durability Degradation of Geopolymer-Stabilized Soil under Sulfate Erosion. Materials. 2022; 15(15):5114. https://doi.org/10.3390/ma15155114
Chicago/Turabian StyleWang, Guanci, Shanling Chen, Minmin Xia, Weilin Zhong, Xuegang Han, Biao Luo, Mohanad Muayad Sabri Sabri, and Jiandong Huang. 2022. "Experimental Study on Durability Degradation of Geopolymer-Stabilized Soil under Sulfate Erosion" Materials 15, no. 15: 5114. https://doi.org/10.3390/ma15155114
APA StyleWang, G., Chen, S., Xia, M., Zhong, W., Han, X., Luo, B., Sabri, M. M. S., & Huang, J. (2022). Experimental Study on Durability Degradation of Geopolymer-Stabilized Soil under Sulfate Erosion. Materials, 15(15), 5114. https://doi.org/10.3390/ma15155114