Tenebrio molitor Larvae-Based Magnetic Polyurea Employed as Crude Oil Spill Removal Tool
Abstract
1. Introduction
2. Experimental
2.1. Materials
2.2. Methods
2.2.1. Polyurea Synthesis
2.2.2. Magnetic Force Test
2.2.3. Crude Oil Magnetic Removal
2.2.4. X-ray Diffraction (XRD)
2.2.5. Fourier Transform Infrared Spectroscopy Using Attenuated Total Reflectance (FTIR-ATR)
2.2.6. Low-Field Nuclear Magnetic Resonance (LF-NMR 1H)
2.2.7. Thermogravimetric Analysis (TGA) and Scanning Differential Calorimetry (DSC)
3. Results and Discussion
3.1. Crude Oil Magnetic Removal
3.2. X-ray Diffraction (XRD)
3.3. Fourier Transform Infrared Spectroscopy Using Attenuated Total Reflectance (FTIR-ATR)
3.4. Low-Field Nuclear Magnetic Resonance (LF-NMR 1H)
3.5. Thermogravimetric Analysis (TGA)
3.6. Differential Scanning Calorimetry (DSC)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Jenck, J.F.; Agterberg, F.; Droescher, M.J. Products and processes for a sustainable chemical industry: A review of achievements and prospects. Green Chem. 2004, 6, 544–556. [Google Scholar] [CrossRef]
- Raquez, J.M.; Deléglise, M.; Lacrampe, M.F.; Krawczak, P. Thermosetting (bio)materials derived from renewable resources: A critical review. Prog. Polym. Sci. 2010, 35, 487–509. [Google Scholar] [CrossRef]
- Kümmerer, K. Sustainable from the very beginning: Rational design of molecules by life cycle engineering as an important approach for green pharmacy and green chemistry. Green Chem. 2007, 9, 899–907. [Google Scholar] [CrossRef]
- Borges, G.R.; Aboelkheir, M.G.; de Souza Junior, F.G.; Waldhelm, K.C.; Kuster, R.M. Poly (butylene succinate) and derivative copolymer filled with Dendranthema grandiflora biolarvicide extract. Environ. Sci. Pollut. Res. 2020, 27, 23575–23585. [Google Scholar] [CrossRef]
- Rodrigues André, F.; Galal Aboelkheir, M. Sustainable approach of applying previous treatment of tire wastes as raw material in cement composites: Review. Mater. Today Proc. 2022, 58, 1557–1565. [Google Scholar] [CrossRef]
- Adekunle, K.F. A Review of Vegetable Oil-Based Polymers: Synthesis and Applications. Open J. Polym. Chem. 2015, 5, 34–40. [Google Scholar] [CrossRef]
- Biermann, U.; Bornscheuer, U.; Meier, M.A.R.; Metzger, J.O.; Schäfer, H.J. Oils and Fats as Renewable Raw Materials in Chemistry. Angew. Chem. Int. Ed. 2011, 50, 3854–3871. [Google Scholar] [CrossRef]
- Da Costa, V.C.; Aboelkheir, M.G.; Pal, K.; Filho RD, T.; Gomes, F. Chapter 15—Smart polymer systems as concrete self-healing agents. In Nanofabrication for Smart Nanosensor Applications; Micro and Nano Technologies; Pal, K., Gomes, F., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 399–413. [Google Scholar]
- Zhang, X.; Burgar, I.; Do, M.D.; Lourbakos, E. Intermolecular interactions and phase structures of plasticized wheat proteins materials. Biomacromolecules 2005, 6, 1661–1671. [Google Scholar] [CrossRef]
- Belgacem, M.N.; Gandini, A. Monomers, Polymers and Composites from Renewable Resources; Elsevier Ltd.: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Aboelkheir, M.G.; Visconte, L.Y.; Oliveira, G.E.; Toledo Filho, R.D.; Souza, F.G. The biodegradative effect of Tenebrio molitor Linnaeus larvae on vulcanized SBR and tire crumb. Sci. Total Environ. 2019, 649, 1075–1082. [Google Scholar] [CrossRef]
- Aboelkheir, M.G.; Bedor, P.B.; Leite, S.G.; Pal, K.; Toledo Filho, R.D.; Gomes de Souza, F. Biodegradation of Vulcanized SBR: A Comparison between Bacillus subtilis, Pseudomonas aeruginosa and Streptomyces sp. Sci. Rep. 2019, 9, 19304. [Google Scholar] [CrossRef]
- Eom, T.; Jeon, J.; Lee, S.; Woo, K.; Heo, J.E.; Martin, D.C.; Wie, J.J.; Shim, B.S. Naturally Derived Melanin Nanoparticle Composites with High Electrical Conductivity and Biodegradability. Part. Part. Syst. Charact. 2019, 36, 1900166. [Google Scholar] [CrossRef]
- Kaewpetch, B.; Prasongsuk, S.; Poompradub, S. Devulcanization of natural rubber vulcanizates by Bacillus cereus TISTR 2651. Express Polym. Lett. 2019, 13, 877–888. [Google Scholar] [CrossRef]
- Lazorenko, G.; Kasprzhitskii, A.; Mischinenko, V. Rubberized geopolymer composites: Effect of filler surface treatment. J. Environ. Chem. Eng. 2021, 9, 105601. [Google Scholar] [CrossRef]
- Yang, S.-S.; Ding, M.-Q.; He, L.; Zhang, C.-H.; Li, Q.-X.; Xing, D.-F.; Cao, G.-L.; Zhao, L.; Ding, J.; Ren, N.-Q.; et al. Biodegradation of polypropylene by yellow mealworms (Tenebrio molitor) and superworms (Zophobas atratus) via gut-microbe-dependent depolymerization. Sci. Total Environ. 2021, 756, 144087. [Google Scholar] [CrossRef]
- Yang, Y.; Wang, J.; Xia, M. Biodegradation and mineralization of polystyrene by plastic-eating superworms Zophobas atratus. Sci. Total Environ. 2020, 708, 135233. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, Y.; Wang, D.; Yan, M.; Zhang, J.; Zhang, P.; Ding, T.; Chen, L.; Chen, C. Current technologies for plastic waste treatment: A review. J. Clean. Prod. 2021, 282, 124523. [Google Scholar] [CrossRef]
- Zielińska, E.; Zieliński, D.; Jakubczyk, A.; Karaś, M.; Pankiewicz, U.; Flasz, B.; Dziewięcka, M.; Lewicki, S. The impact of polystyrene consumption by edible insects Tenebrio molitor and Zophobas morio on their nutritional value, cytotoxicity, and oxidative stress parameters. Food Chem. 2021, 345, 128846. [Google Scholar] [CrossRef]
- Gacitua, W.; Ballerini, A.; Zhang, J. Polymer Nanocomposites: Synthetic and Natural Fillers—A Review. Maderas Cienc. Tecnol. 2005, 7, 159–178. [Google Scholar] [CrossRef]
- Ghanbarzadeh, B.; Oleyaei, S.A.; Almasi, H. Nanostructured Materials Utilized in Biopolymer-Based Plastics for Food Packaging Applications. Crit. Rev. Food Sci. Nutr. 2015, 55, 1699–1723. [Google Scholar] [CrossRef]
- Aboelkheir, M.; Siqueira, C.Y.S.; Souza, F.G.; Filho, R.D.T. Influence of Styrene-Butadiene Co-Polymer on the Hydration Kinetics of SBR-Modified Well Cement Slurries. Macromol. Symp. 2018, 380, 1800131. [Google Scholar] [CrossRef]
- Kalia, S.; Kango, S.; Kumar, A.; Haldorai, Y.; Kumari, B.; Kumar, R. Magnetic polymer nanocomposites for environmental and biomedical applications. Colloid Polym. Sci. 2014, 292, 2025–2052. [Google Scholar] [CrossRef]
- Thanikaivelan, P.; Narayanan, N.T.; Pradhan, B.K.; Ajayan, P.M. Collagen based magnetic nanocomposites for oil removal applications. Sci. Rep. 2012, 2, 230. [Google Scholar] [CrossRef]
- Veloso de Carvalho, F.; Pal, K.; Gomes de Souza, F., Jr.; Dias Toledo Filho, R.; Moraes de Almeida, T.; Daher Pereira, E.; Thode Filho, S.; Galal Aboelkheir, M.; Corrêa Costa, V.; Ricardo Barbosa de Lima, N.; et al. Polyaniline and magnetite on curaua fibers for molecular interface improvement with a cement matrix. J. Mol. Struct. 2021, 1233, 130101. [Google Scholar] [CrossRef]
- Shirinova, H.; Di Palma, L.; Sarasini, F.; Tirillò, J.; Ramazanov, M.A.; Hajiyeva, F.; Sannino, D.; Polichetti, M.; Galluzzi, A. Synthesis and characterization of magnetic nanocomposites for environmental remediation. Chem. Eng. Trans. 2016, 47, 103–108. [Google Scholar]
- Meiorin, C.; Muraca, D.; Pirota, K.R.; Aranguren, M.I.; Mosiewicki, M.A. Nanocomposites with superparamagnetic behavior based on a vegetable oil and magnetite nanoparticles. Eur. Polym. J. 2014, 53, 90–99. [Google Scholar] [CrossRef]
- Souza, F.G.; Ferreira, A.C.; Varela, A.; Oliveira, G.E.; Machado, F.; Pereira, E.D.; Fernandes, E.; Pinto, J.C.; Nele, M. Methodology for determination of magnetic force of polymeric nanocomposites. Polym. Test. 2013, 32, 1466–1471. [Google Scholar] [CrossRef]
- Lopes, M.C.; Souza, F.G., Jr.; Oliveira, G.E. Espumados magnetizáveis úteis em processos de recuperação ambiental. Polímeros 2010, 20, 359–365. [Google Scholar] [CrossRef]
- Gomes de Souza, F., Jr.; Marins, J.A.; Rodrigues, C.H.M.; Pinto, J.C. A Magnetic Composite for Cleaning of Oil Spills on Water. Macromol. Mater. Eng. 2010, 295, 942–948. [Google Scholar] [CrossRef]
- Ferreira, L.P.; Moreira, A.N.; Delazare, T.; Oliveira Geiza, E.; Souza, F.G., Jr. Petroleum Absorbers Based on CNSL, Furfural and Lignin—The Effect of the Chemical Similarity on the Interactions among Petroleum and Bioresins. Macromol. Symp. 2012, 319, 210–221. [Google Scholar] [CrossRef]
- Varela, A.; Oliveira, G.; Souza, F.G., Jr.; Rodrigues, C.H.M.; Costa, M.A.S. New petroleum absorbers based on cardanol-furfuraldehyde magnetic nanocomposites. Polym. Eng. Sci. 2013, 53, 44–51. [Google Scholar] [CrossRef]
- Grance, E.G.O.; Souza, F.G.; Varela, A.; Pereira, E.D.; Oliveira, G.E.; Rodrigues, C.H.M. New petroleum absorbers based on lignin-CNSL-formol magnetic nanocomposites. J. Appl. Polym. Sci. 2012, 126, E305–E312. [Google Scholar] [CrossRef]
- Elias, E.; Costa, R.; Marques, F.; Oliveira, G.; Guo, Q.; Thomas, S.; Souza, F.G., Jr. Oil-spill cleanup: The influence of acetylated curaua fibers on the oil-removal capability of magnetic composites. J. Appl. Polym. Sci. 2015, 132, 41732–41740. [Google Scholar] [CrossRef]
- Marques, F.D.; Souza, F.G., Jr.; Oliveira, G.E. Oil sorbers based on renewable sources and coffee grounds. J. Appl. Polym. Sci. 2016, 133, 43127–43134. [Google Scholar] [CrossRef]
- Da Costa, R.M.D.; Hungerbühler, G.; Saraiva, T.; De Jong, G.; Moraes, R.S.; Furtado, E.G.; Silva, F.M.; de Oliveira, G.E.; Ferreira, L.S.; Souza, F.G., Jr. Green polyurethane synthesis by emulsion technique: A magnetic composite for oil spill removal. Polímeros 2017, 27, 273–279. [Google Scholar] [CrossRef]
- Silva, J.C.; Oliveira, G.E.; Toledo Filho, R.D.; Souza, F.G., Jr. Oil Spill Clean-Up Tool Based on Castor Oil and Coffee Grounds Magnetic Resins. Macromol. Symp. 2018, 380, 1800095. [Google Scholar] [CrossRef]
- Lopes, M.C.; Marques, F.; Souza, F.G., Jr.; Oliveira, G.E. Experimental Design Optimization of Castor Oil, Phthalic Anhydride, and Glycerin Magnetic Nanocomposites Useful as Oil Spill Cleanup Tool. Macromol. Symp. 2018, 380, 1800085. [Google Scholar] [CrossRef]
- Marinho, V.; Lima, N.; Neves, M.A.; Souza, F., Jr. Petroleum Sorbers Based on Renewable Alkyd Resin and Lignin. Macromol. Symp. 2018, 380, 1800116. [Google Scholar] [CrossRef]
- Caetano, R.M.J.; Bedor, P.B.A.; de Jesus, E.F.O.; Leite, S.G.F.; Souza, F.G., Jr. Oil Biodegradation Systems Based on γ Irradiated Poly (Butylene Succinate). Macromol. Symp. 2018, 380, 1800123. [Google Scholar] [CrossRef]
- Figueiredo, A.S.; Icart, L.P.; Marques, F.D.; Fernandes, E.R.; Ferreira, L.P.; Oliveira, G.E.; Souza, F.G. Extrinsically magnetic poly(butylene succinate): An up-and-coming petroleum cleanup tool. Sci. Total Environ. 2019, 647, 88–98. [Google Scholar] [CrossRef]
- Da Silveira Maranhão, F.; Pereira de Oliveira, C.; Filho, S.T.; Das, D.B.; de Souza, F.G., Jr. Synthesis and Characterization of Modified Magnetic Nanoparticles for Removal of Dispersed Oil in Water. Braz. J. Exp. Des. Data Anal. Inferent. Stat. 2021, 1, 148–156. [Google Scholar] [CrossRef]
- Da Silveira Maranhão, F.; Gomes, F.; Thode, S.; Das, D.B.; Pereira, E.; Lima, N.; Carvalho, F.; Aboelkheir, M.; Costa, V.; Pal, K. Oil Spill Sorber Based on Extrinsically Magnetizable Porous Geopolymer. Materials 2021, 14, 5641. [Google Scholar] [CrossRef]
- Scherrer, P. Bestimmung der inneren Struktur und der Größe von Kolloidteilchen mittels Röntgenstrahlen. In Kolloidchemie Ein Lehrbuch; Chemische Technologie in Einzeldarstellungen; Zsigmondy, R., Ed.; Springer: Berlin/Heidelberg, Germany, 1912; pp. 387–409. [Google Scholar]
- Balan, V.; Mihai, C.-T.; Cojocaru, F.-D.; Uritu, C.-M.; Dodi, G.; Botezat, D.; Gardikiotis, I. Vibrational Spectroscopy Fingerprinting in Medicine: From Molecular to Clinical Practice. Materials 2019, 12, 2884. [Google Scholar] [CrossRef]
- Bordbar, A.K.; Rastegari, A.A.; Amiri, R.; Ranjbakhsh, E.; Abbasi, M.; Khosropour, A.R. Characterization of Modified Magnetite Nanoparticles for Albumin Immobilization. Biotechnol. Res. Int. 2014, 2014, e705068. [Google Scholar] [CrossRef]
- Da Costa, R.C.; Souza, F.G., Jr. Preparo de nanocompósitos de maghemita e polianilina assistido por ultrassom. Polímeros 2014, 24, 243–249. [Google Scholar] [CrossRef]
- Członka, S.; Bertino, M.F.; Kośny, J.; Strąkowska, A.; Masłowski, M.; Strzelec, K. Linseed oil as a natural modifier of rigid polyurethane foams. Ind. Crops Prod. 2018, 115, 40–51. [Google Scholar] [CrossRef]
- Kimura-Suda, H.; Takahata, M.; Ito, T.; Shimizu, T.; Kanazawa, K.; Ota, M.; Iwasaki, N. Quick and easy sample preparation without resin embedding for the bone quality assessment of fresh calcified bone using fourier transform infrared imaging. PLoS ONE 2018, 13, e0189650. [Google Scholar] [CrossRef]
- Kumar Das, A.; Marwal, A.; Verma, R. Bio-Reductive Synthesis and Characterization of Plant Protein Coated Magnetite Nanoparticles. Nano Hybrids 2014, 7, 69–86. [Google Scholar] [CrossRef]
- Ma, M.; Zhang, Y.; Yu, W.; Shen, H.; Zhang, H.; Gu, N. Preparation and characterization of magnetite nanoparticles coated by amino silane. Colloids Surf. A Physicochem. Eng. Asp. 2003, 212, 219–226. [Google Scholar] [CrossRef]
- Resende, D.K.; Dornelas, C.B.; Tavares, M.I.; Gomes, A.S.; Moreira, L.A.; Cabral, L.M.; Simeoni, L.A. Preparação de argila modificada com cloreto de cetilpiridíneo e avaliação da interação desta com o PVC. Polímeros 2010, 20, 231–235. [Google Scholar] [CrossRef][Green Version]
- Vieira, I.R.S.; Costa, L.D.F.D.O.; Miranda, G.D.S.; Nardecchia, S.; Monteiro, M.S.D.S.D.B.; Ricci-Júnior, E.; Delpech, M.C. Waterborne Poly(urethane-urea)s Nanocomposites Reinforced with Clay, Reduced Graphene Oxide and Respective Hybrids: Synthesis, Stability and Structural Characterization. J. Polym. Environ. 2020, 28, 74–90. [Google Scholar] [CrossRef]
- Oliveira, V.C.D.S.P.D.; Tavares, M.I.B.; Silva, E.M.B.D.; Lima, B.N.B.D.; Cucinelli Neto, R.P. Uso da rmn de baixa resolução na avaliação da dinâmica molecular do Origanum vulgare. Quím. Nova 2015, 38, 351–355. [Google Scholar]
- Zheng, S.; Li, T.; Li, Y.; Shi, Q.; Wu, F. Novel 1H NMR relaxometry methods to study the proton distribution and water migration properties of tobacco. Anal. Methods 2017, 9, 1741–1747. [Google Scholar] [CrossRef]
- Awwad, A.M.; Salem, N.M. A Green and Facile Approach for Synthesis of Magnetite Nanoparticles. Nanosci. Nanotechnol. 2013, 2, 208–213. [Google Scholar] [CrossRef]
- Godovski, D.Y. Electron behavior and magnetic properties of polymer nanocomposites. Adv. Polym. Sci. 1995, 119, 78–122. [Google Scholar]
- Barrera, G.; Sciancalepore, C.; Messori, M.; Allia, P.; Tiberto, P.; Bondioli, F. Magnetite-epoxy nanocomposites obtained by the reactive suspension method: Microstructural, thermo-mechanical and magnetic properties. Eur. Polym. J. 2017, 94, 354–365. [Google Scholar] [CrossRef]
- Judeinstein, P.; Sanchez, C. Hybrid organic-inorganic materials: A land of multidisciplinarity. J. Mater. Chem. 1996, 6, 511–525. [Google Scholar] [CrossRef]
- Marín, T.; Montoya, P.; Arnache, O.; Pinal, R.; Calderón, J. Development of magnetite nanoparticles/gelatin composite films for triggering drug release by an external magnetic field. Mater. Des. 2018, 152, 78–87. [Google Scholar] [CrossRef]
Characteristic Band Number | Band Assignments |
---|---|
1 | N–H stretch amides |
2 | C–H stretching bond in CH2 and CH3 groups |
3 | |
4 | N=C=O (isocyanate) stretching |
5 | C=O & C=C conjugated stretching |
6 | NO2 aliphatic nitro group |
7 | N–H bending |
8 | Nitro compounds NO2 asymmetric |
9 | C–O–C asymmetrical stretching |
10 | N–H bending and C–N stretching |
11 | Carbonates |
12 | |
13 | Alkene sp2 CH bending |
14 | Fe-O stretching splitted bands |
15 |
Sample | ΔH (J/g) | Error |
---|---|---|
Polyurea | −33.6 | 4.29 |
Magnetite 1% | −51.6 | 6.59 |
Magnetite 3% | −70.6 | 9.02 |
Magnetite Pure | −65.7 | 8.39 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aboelkheir, M.; Gomes, F.; Meiorin, C.; Galdino, T. Tenebrio molitor Larvae-Based Magnetic Polyurea Employed as Crude Oil Spill Removal Tool. Materials 2022, 15, 5063. https://doi.org/10.3390/ma15145063
Aboelkheir M, Gomes F, Meiorin C, Galdino T. Tenebrio molitor Larvae-Based Magnetic Polyurea Employed as Crude Oil Spill Removal Tool. Materials. 2022; 15(14):5063. https://doi.org/10.3390/ma15145063
Chicago/Turabian StyleAboelkheir, Mostafa, Fernando Gomes, Cintia Meiorin, and Tiago Galdino. 2022. "Tenebrio molitor Larvae-Based Magnetic Polyurea Employed as Crude Oil Spill Removal Tool" Materials 15, no. 14: 5063. https://doi.org/10.3390/ma15145063
APA StyleAboelkheir, M., Gomes, F., Meiorin, C., & Galdino, T. (2022). Tenebrio molitor Larvae-Based Magnetic Polyurea Employed as Crude Oil Spill Removal Tool. Materials, 15(14), 5063. https://doi.org/10.3390/ma15145063