New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applications
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. XRD Measurements
3.1.1. Raw and Milled Powders
3.1.2. Bulk Sintered Disks
3.1.3. Time Stability (Aging) of the Sintered Materials
3.2. SEM and EDS
3.3. Raman Spectroscopy
3.4. Spectroscopic Ellipsometry
3.5. FTIR Spectroscopy
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ulefone Armor 9 Thermal Imaging Camera IP68 IP69K Waterproof 6.3 Inch 8 GB 12 8GB 64 MP Camera NFC 6600 mAh Helio P90 Octa Core 4G Rugged Smartphone. Available online: https://www.banggood.com/Ulefone-Armor-9-Thermal-Imaging-Camera-IP68-IP69K-Waterproof-6_3-inch-8GB-128GB-64MP-Camera-NFC-6600mAh-Helio-P90-Octa-Core-4G-Rugged-Smartphone-p-1713874.html?cur_warehouse=HK&ID=6246445224 (accessed on 18 January 2022).
- Pro-Grade Thermal Camera for Smartphones FLIR ONE Pro Model: FLIR ONE Pro—iOS. Available online: https://www.flir.eu/products/flir-one-pro/ (accessed on 18 January 2022).
- Feltz, A.; Burckhardt, W.; Voigt, B.; Linke, D. Optical glasses for IR transmittance. J. Non-Cryst. Solids 1991, 129, 31–39. [Google Scholar] [CrossRef]
- Zhang, X.H.; Guimond, Y.; Bellec, Y. Production of complex chalcogenide glass optics by molding for thermal imaging. J. Non-Cryst. Solids 2003, 326–327, 519–523. [Google Scholar] [CrossRef]
- Cha, D.H.; Kim, H.-J.; Hwang, Y.; Jeong, J.C.; Kim, J.-H. Fabrication of molded chalcogenide-glass lens for thermal imaging applications. Appl. Opt. 2012, 51, 5649–5656. [Google Scholar] [CrossRef]
- Guimond, Y.; Bellec, Y. Molded GASIR infrared optics for automotive applications. In Proceedings of the Defense and Security Symposium, Infrared Technology and Applications XXXII (Proceedings of Spie 62062L), Orlando, FL, USA, 17–21 April 2006. [Google Scholar] [CrossRef]
- Mao, A.W.; Aitken, B.G.; Sen, S. Synthesis and physical properties of chalcogenide glasses in the system BaSe–Ga2Se3–GeSe2. J. Non-Cryst. Solids 2013, 369, 38–43. [Google Scholar] [CrossRef]
- Jiang, C.; Wang, X.; Zhu, Q.; Nie, Q.; Zhu, M.; Zhang, P.; Dai, S.; Shen, X.; Xu, T.; Cheng, C.; et al. Improvements on the optical properties of Ge–Sb–Se chalcogenide glasses with iodine incorporation. Infrared Phys. Techn. 2015, 73, 54–61. [Google Scholar] [CrossRef]
- Velmuzhov, A.P.; Sukhanov, M.V.; Plekhovich, A.D.; Shiryaev, V.S.; Churbanov, M.F. Effect of iodine on properties of [GeS1.5]100 − xIx (x = 0 ÷ 10) glasses. J. Non-Cryst. Solids 2018, 480, 8–12. [Google Scholar] [CrossRef]
- Vassilev, V.; Stephanova, S.; Markova, I.; Andreev, R.; Ivanova, Y.; Alexandrova, N.; Ivanova, Z.; Hadjinikolova, S. Glass formation in the Se–Ge–Zn and GeSe3–ZnSe–Ag2Se systems. J. Mater. Sci. 1997, 32, 4443–4445. [Google Scholar] [CrossRef]
- Choi, J.; Gurman, S.J.; Davis, E.A. Structure of amorphous GexSe1-x and GexSeyZnz thin films: An EXAFS study. J. Non-Cryst. Solids 2002, 297, 156–172. [Google Scholar] [CrossRef]
- De Lima, J.C.; dos Santos, V.H.F.; Grandi, T.A. Structural study of the Zn-Se system by ball milling technique. Nanostruct. Mater. 1999, 11, 51–57. [Google Scholar] [CrossRef]
- Hansen, M.; Anderko, K. Constitution of Binary Alloys, 2nd ed.; Genium Publishing Corp./McGraw-Hill: New York, NY, USA, 1991; p. 1192. [Google Scholar]
- Yin, W.; Iyer, A.K.; Li, C.; Yao, J.; Mar, A. Noncentrosymmetric chalcogenides BaZnSiSe4 and BaZnGeSe4 featuring one-dimensional structures. J. Alloy. Compd. 2017, 708, 414–421. [Google Scholar] [CrossRef]
- Popescu, M.; Sava, F.; Velea, A. Chapter I.2. Self-organization and size effects in amorphous silicon. In Size Effects in Nanostructures: Basics and Applications; Springer Series in Materials Science 205, Kuncser, V., Miu, L., Eds.; Springer: Berlin/Heidelberg, Germany, 2014; pp. 29–45. [Google Scholar]
- Yang, Y.; Liu, S.-C.; Yang, W.; Li, Z.; Wang, Y.; Wang, X.; Zhang, S.; Zhang, Y.; Long, M.; Zhang, G.; et al. Air-Stable In-Plane Anisotropic GeSe2 for Highly Polarization-Sensitive Photodetection in Short Wave Region. J. Am. Chem. Soc. 2018, 140, 4150–4156. [Google Scholar] [CrossRef]
- Usuki, T.; Araki, F.; Uemura, O.; Kameda, Y.; Nasu, T.; Sakurai, M. Structure Changes during Amorphization of Ge–Se Alloys by Mechanical Milling. Mater. Trans. 2003, 44, 344–350. [Google Scholar] [CrossRef] [Green Version]
- Kolobov, A.V. Photo-Induced Metastability in Amorphous Semiconductors; WILEY-VCH GmbH & Co., KGaA: Weinheim, Germany, 2003; pp. 23–44. [Google Scholar]
- Zhang, X.; Tan, Q.H.; Wu, J.B.; Shi, W.; Tan, P.H. Review on the Raman spectroscopy of different types of layered materials. Nanoscale 2016, 8, 6435–6450. [Google Scholar] [CrossRef] [Green Version]
- Xu, J.; Lu, A.; Wang, C.; Zou, R.; Liu, X.; Wu, X.; Wang, Y.; Li, S.; Sun, L.; Chen, X.; et al. ZnSe-Based Longitudinal Twinning Nanowires. Adv. Eng. Mater. 2014, 16, 459–465. [Google Scholar] [CrossRef]
- Hennion, B.; Moussa, F.; Pepy, G.; Kunc, K. Normal modes of vibrations in ZnSe. Phys. Lett. 1971, 36, 376–378. [Google Scholar] [CrossRef]
- Serincan, U.; Kartopu, G.; Guennes, A.; Finstad, T.G.; Turan, R.; Ekinci, Y.; Bayliss, S.C. Characterization of Ge nanocrystals embedded in SiO2 by Raman spectroscopy. Semicond. Sci. Technol. 2004, 19, 247–251. [Google Scholar] [CrossRef]
- Fujii, M.; Hayashi, S.; Yamamoto, K. Growth of Ge Microcrystals in SiO2 Thin Film Matrices: A Raman and Electron Microscopic Study. Jpn. J. Appl. Phys. 1991, 30, 687–694. [Google Scholar] [CrossRef]
- Chen, Y.; Xu, T.; Shen, X.; Wang, R.; Zong, S.; Da, S.; Nie, Q. Optical and structure properties of amorphous Ge–Sb–Se films for ultrafast all-optical signal processing. J. Alloys Compd. 2013, 580, 578–583. [Google Scholar] [CrossRef]
- Sugai, S. Stochastic random network model in Ge and Si chalcogenide glasses. Phys. Rev. B 1987, 35, 1345–1361. [Google Scholar] [CrossRef]
- Polosan, S.; Galca, A.C.; Secu, M. Band-gap correlations in Bi4Ge3O12 amorphous and glass–ceramic materials. Solid State Sci. 2011, 13, 49–53. [Google Scholar] [CrossRef]
- Liu, S.-C.; Mi, Y.; Xue, D.-J.; Chen, Y.-X.; He, C.; Liu, X.; Hu, J.-S.; Wan, L.-J. Investigation of Physical and Electronic Properties of GeSe for Photovoltaic Applications. Adv. Electron. Mater. 2017, 3, 1700141. [Google Scholar] [CrossRef] [Green Version]
- Dahmani, R.; Salamanca-Riba, L.; Nguyen, N.V.; Chandler-Horowitz, D.; Jonker, B.T. Determination of the optical constants of ZnSe films by spectroscopic ellipsometry. J. Appl. Phys. 1994, 76, 514–517. [Google Scholar] [CrossRef]
- Viña, L.; Logothetidis, S.; Cardona, M. Temperature dependence of the dielectric function of germanium. Phys. Rev. B 1984, 30, 1979–1991. [Google Scholar] [CrossRef]
- Cardona, M. Fundamental Reflectivity Spectrum of Semiconductors with ZincBlende Structure. J. Appl. Phys. 1961, 32, 2151–2155. [Google Scholar] [CrossRef]
- Adachi, S.; Taguchi, T. Optical properties of ZnSe. Phys. Rev. B 1991, 43, 9569–9577. [Google Scholar] [CrossRef]
- Eymard, R.; Otto, A. Optical and electron-energy-loss spectroscopy of GeS, GeSe, SnS, and SnSe single crystals. Phys. Rev. B 1977, 16, 1616–1623. [Google Scholar] [CrossRef]
- Petracovschi, E.; Hubert, M.; Adam, J.-L.; Zhang, X.-H.; Calvez, L. Synthesis of GeSe4 glass by mechanical alloying and sintering. Phys. Status Solidi B 2014, 251, 1330–1333. [Google Scholar] [CrossRef]
- Wei, S.; Zhang, L.; Yang, H.; Zhou, T.; Wong, C.; Zhang, Q.; Chen, H. Preliminary study of 3D ball-milled powder processing and SPS-accelerated densification of ZnSe ceramics. Opt. Mater. Express 2017, 7, 1131–1140. [Google Scholar] [CrossRef]
- Zhou, G.; Calvez, L.; Delaizir, G.; Zhang, X.-H.; Rocherulle, J. Comparative study of ZnSe powders synthesized by two different methods and sintered by Hot-Pressing. Optoelectron. Adv. Mater. Rapid Commun. 2014, 8, 436–441. [Google Scholar]
- Gaffet, E. Phase transition induced by ball milling in germanium. Mater. Sci. Eng. A 1991, 136, 161–169. [Google Scholar] [CrossRef]
Abbrev. Name | Composition (at. %), Composition (wt. %) | Raw Powders | WC Milling Balls | Powder’s Mass (g) | Total Milling Time (hours) / Speed (rpm) | Milling Time (min) / Pause (min) | |
---|---|---|---|---|---|---|---|
Substance | Mass (g) / at. % | Diameter (cm)/ Number | |||||
GZSe-1 | Ge23.3Zn30.0Se46.7, Ge23.1Zn26.7Se50.2, | GeSe2 | 12.4000 / 70 | 20 / 2 | 16.9225 | 150 / 400 | 3 / 6 |
Zn | 4.5225 / 30 | 10 / 5 | 92 / 400 | 3 / 3 | |||
GZSe-2 | Ge26.7Zn20.0Se53.3, Ge26.0Zn17.5Se56.5, | GeSe2 | 12.4000 / 80 | 20 / 2 | 15.0381 | 18 / 400 | 3 / 6 |
Zn | 2.6381 / 20 | 10 / 5 | |||||
GZSe-3 | Stage 1: Zn50.0Se50.0, Zn45.3Se54.7 | Se | 8.2050/50 | 20 / 2 15 / 2 10 / 10 5 / 30 | 15.0 | 24 / 400 | 3 / 6 |
Zn | 6.7950 / 50 | ||||||
Stage 2: Ba6.2Zn26.6Se54.7I12.5, Ba10.1Zn20.4Se50.8I18.7 | ZnSe | 4.4856 / 53.13 | 9.9433 | 169/400 | 3 / 3 | ||
BaI2 | 2.8597 / 18.75 | ||||||
Se | 2.5980 / 28.12 | ||||||
Stage 3: Ba4.0Ge12.0Zn17.0Se59.0I8.0, Ba6.7Ge10.6Zn13.5Se56.8I12.4, | Ba6.2Zn26.6Se54.7I12.5 GeSe2 | 7.2303 / 64 3.6770 / 6 | 10.9073 | 24 / 400 | 3 / 3 |
GZSe-1, Ge23.1Zn26.7Se50.2 (wt. %) | GZSe-2, Ge26.0Zn17.5Se56.5 (wt. %) | GZSe-3, Ba6.7Ge10.6Zn13.5Se56.8I12.4 (wt. %) | ||||
---|---|---|---|---|---|---|
Powder (wt. %) | Bulk (wt. %) | Powder (wt. %) | Bulk (wt. %) | Powder (wt. %) | Bulk (wt. %) | |
Ratio of phases | 27.7 a-Ge16.7Se11.0 58.4 c-ZnSe 13.4 o-GeSe 0.5 h-ZnSe | 57.4 c-ZnSe 33.6 o-GeSe 1.5 h-ZnSe 6.5 c-Ge | 51.4 a-Ge21.2Se30.2 38.4 c-ZnSe 10.1 o-GeSe 0.1 h-Zn | 19.7 a-Ge2.1Zn5.2Se12.4 43.0 c-Zn0.5Ge0.25Se 37.3 o-GeSe | 50.5 a- * 34.6 c-Zn0.5Ge0.25Se 14.9 c- * | 51.4 a- * 43.4 c-Zn0.5Ge0.25Se 5.2 c- * |
The Average Size of the Crystallites (nm) | ||||||
---|---|---|---|---|---|---|
c-ZnSe/c-Zn0.5Ge0.25Se | o-GeSe | |||||
Powder | Disk, as-Prepared | Disk, after 8 Months | Powder | Disk, as-Prepared | Disk, after 8 Months | |
d_GZSe-1 | 10.8 | 33.1 | 57.7 | 13.9 | 53.3 | 119.9 |
d_GZSe-2 | 9.5 | 10.0 | 13.3 | 16.5 | 27.0 | 56.4 |
d_GZSe-3 | 13.4 | 6.8 | 7.6 | - | - | - |
Disk’s Abbreviated Name | Composition of Sintered Samples from EDS Spectra (at. %) | The Atomic Percentages in the Starting Powders | The Weight Percentages of the Phases Formed in Bulks as Inferred From XRD |
---|---|---|---|
d_GZSe-1 | Ge26Zn32Se42 | Ge23.3Zn30.0Se46.7 | 57.4% c-ZnSe; 33.6% o-GeSe; 1.5% h-ZnSe; 6.5% c-Ge |
d_GZSe-2 | Ge28Zn21Se51 | Ge26.7Zn20.0Se53.3 | 19.7% a-Ge2.1Zn5.2Se12.4; 43.0% c-Zn0.5Ge0.25Se; 37.3% o-GeSe |
d_GZSe-3 | Ba2Ge16Zn19Se60I3 | Ba4.0Ge12.0Zn17.0Se59.0I8.0 | 51.4% a- *; 43.4% c-Zn0.5Ge0.25Se; 5.2% c- * |
d_GZSe-1 | d_GZSe-2 | d_GZSe-3 | ||||
---|---|---|---|---|---|---|
Ge23.1Zn26.7Se50.2 | Ge26.0Zn17.5Se56.5 | Ba6.7Ge10.6Zn13.5Se56.8I12.4 | ||||
60.0% ZnSe 33.3% o-GeSe 6.7% c-Ge | 19.7% a-Ge1.9Zn7.7Se10.1 43.0% c-Zn0.5Ge0.25Se 37.3% o-GeSe | 51.4% a-* 43.4% c-Zn0.5Ge0.25Se 5.2% c-* | ||||
λ = 325 nm | λ = 633 nm | λ = 325 nm | λ = 633 nm | λ = 325 nm | λ = 633 nm | |
Raman peaks (cm−1) | 76 | 75 | ||||
82 (GeSe) | 81 (GeSe) | |||||
100 | ||||||
149 (GeSe) | 146 (GeSe) | |||||
175 (GeSe) | 174 (GeSe) | |||||
187 (GeSe) | 187 (GeSe) | 188 (GeSe) | 185 (GeSe) | 199 (a-GeSe4) | 194 (a-GeSe4) | |
252 (ZnSe) | 254 (ZnSe) | 217 (a-GeSe4) | 212 (a-GeSe4) | |||
301 (Ge) | 261 (a-GeSe4) | 260 (a-GeSe4) | ||||
303 (Ge) | 313 (a-GeSe4) | 309 (a-GeSe4) |
GeSe | ZnSe | Ge | a-GeSe4 | ||
---|---|---|---|---|---|
λ = 633 nm | λ = 532 nm | Inelastic Neutron Scattering | λ = 633 / 514.5 nm | λ = 785 nm | |
Raman peaks (cm−1) | Ag3 82 B3g1 151 Ag2 175 Ag1 188 [19] | 2TA(X) 139 TO(Γ) 204 LO(Γ) 251 [20] | TA(X) 70 LA(X) 194 TO(Γ) 213 LO(Γ) 253 [21] | E2 303.3 [22] / 300.5 [23] | CS 195 [24,25] ES 211 [24], 213 [25] polymeric Sen chains: 257 [24], 259 [25] ES 298 [24], 285 [25] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Velea, A.; Sava, F.; Badica, P.; Burdusel, M.; Mihai, C.; Galca, A.-C.; Matei, E.; Buruiana, A.-T.; El Khouja, O.; Calvez, L. New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applications. Materials 2022, 15, 5002. https://doi.org/10.3390/ma15145002
Velea A, Sava F, Badica P, Burdusel M, Mihai C, Galca A-C, Matei E, Buruiana A-T, El Khouja O, Calvez L. New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applications. Materials. 2022; 15(14):5002. https://doi.org/10.3390/ma15145002
Chicago/Turabian StyleVelea, Alin, Florinel Sava, Petre Badica, Mihail Burdusel, Claudia Mihai, Aurelian-Catalin Galca, Elena Matei, Angel-Theodor Buruiana, Outman El Khouja, and Laurent Calvez. 2022. "New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applications" Materials 15, no. 14: 5002. https://doi.org/10.3390/ma15145002
APA StyleVelea, A., Sava, F., Badica, P., Burdusel, M., Mihai, C., Galca, A.-C., Matei, E., Buruiana, A.-T., El Khouja, O., & Calvez, L. (2022). New Chalcogenide Glass-Ceramics Based on Ge-Zn-Se for IR Applications. Materials, 15(14), 5002. https://doi.org/10.3390/ma15145002