Impact of Cerium Oxide on the State and Hydrogenation Activity of Ruthenium Species Incorporated on Mesocellular Foam Silica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of the Catalysts
2.3. Characterization Techniques
2.3.1. X-ray Diffraction (XRD)
2.3.2. N2 Adsorption/Desorption
2.3.3. ICP-OES
2.3.4. XRF
2.3.5. X-ray Photoelectron Spectroscopy (XPS)
2.3.6. H2-Chemisorption
2.4. Transformation of Levulinic Acid
3. Results and Discussion
3.1. Textural Parameters of the Catalysts
3.2. Efficiency of Metal Incorporation
3.3. Oxidation State of Metals
3.4. H2 Chemisorption Analysis
3.5. Catalytic Testing in Hydrogenation of Levulinic Acid
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. ChemInform Abstract: Gold Catalysts Prepared by Coprecipitation for Low-Temperature Oxidation of Hydrogen and of Carbon Monoxide. J. Catal. 1989, 115, 301–309. [Google Scholar] [CrossRef]
- Henry, C.R.; Chapon, C.; Giorgio, S.; Goyhenex, C. Chemisorption and Reactivity on Supported Clusters and Thin Films. In Size Effects in Heterogeneous Catalysis; Lambert, R.M., Pacchioni, G., Eds.; Springer: Dordrecht, The Netherlands, 1997; pp. 117–152. [Google Scholar]
- Zhang, L.; Zhou, M.; Wang, A.; Zhang, T. Selective Hydrogenation over Supported Metal Catalysts: From Nanoparticles to Single Atoms. Chem. Rev. 2020, 120, 683–733. [Google Scholar] [CrossRef] [PubMed]
- Piskun, A.; Ftouni, J.; Tang, Z.; Weckhuysen, B.; Bruijnincx, P.; Heeres, H. Hydrogenation of levulinic acid to γ-valerolactone over anatase-supported Ru catalysts: Effect of catalyst synthesis protocols on activity. Appl. Catal. A Gen. 2018, 549, 197–206. [Google Scholar] [CrossRef]
- Luo, W.; Deka, U.; Beale, A.M.; van Eck, E.R.H.; Bruijnincx, P.C.A.; Weckhuysen, B.M. Ruthenium-catalyzed hydrogenation of levulinic acid: Influence of the support and solvent on catalyst selectivity and stability. J. Catal. 2013, 301, 175–186. [Google Scholar] [CrossRef]
- Newman, C.; Zhou, X.; Goundie, B.; Ghampson, I.T.; Pollock, R.A.; Ross, Z.; Wheeler, M.C.; Meulenberg, R.W.; Austin, R.N.; Frederick, B.G. Effects of support identity and metal dispersion in supported ruthenium hydrodeoxygenation catalysts. Appl. Catal. A Gen. 2014, 477, 64–74. [Google Scholar] [CrossRef]
- Hua, M.; Song, J.; Huang, X.; Hou, M.; Fan, H.; Zhang, Z.; Wu, T.; Han, B. Support Effect of Ru Catalysts for Efficient Conversion of Biomass-Derived 2,5-Hexanedione to Different Products. ACS Catal. 2021, 11, 7685–7693. [Google Scholar] [CrossRef]
- Su, F.; Lv, L.; Lee, F.Y.; Liu, T.; Cooper, A.A.I.; Zhao, X.S. Thermally Reduced Ruthenium Nanoparticles as a Highly Active Heterogeneous Catalyst for Hydrogenation of Monoaromatics. J. Am. Chem. Soc. 2007, 129, 14213–14223. [Google Scholar] [CrossRef]
- Yan, Y.; Wang, Q.; Jiang, C.; Yao, Y.; Lu, D.; Zheng, J.; Dai, Y.; Wang, H.; Yang, Y. Ru/Al2O3 catalyzed CO2 hydrogenation: Oxygen-exchange on metal-support interfaces. J. Catal. 2018, 367, 194–205. [Google Scholar] [CrossRef]
- Chen, S.; Abdel-Mageed, A.M.; Dyballa, M.; Parlinska-Wojtan, M.; Bansmann, J.; Pollastri, S.; Olivi, L.; Aquilanti, G.; Behm, R.J. Raising the COx Methanation Activity of a Ru/γ-Al2O3 Catalyst by Activated Modification of Metal–Support Interactions. Angew. Chemie Int. Ed. 2020, 59, 22763–22770. [Google Scholar] [CrossRef]
- Gao, X.; Zhu, S.; Dong, M.; Wang, J.; Fan, W. Ru/CeO2 catalyst with optimized CeO2 morphology and surface facet for efficient hydrogenation of ethyl levulinate to γ-valerolactone. J. Catal. 2020, 389, 60–70. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, X.; Li, L.; Qi, H.; Yang, C.; Liu, W.; Pan, X.; Liu, X.; Yang, X.; Huang, Y.; et al. Ru/TiO2 Catalysts with Size-Dependent Metal/Support Interaction for Tunable Reactivity in Fischer–Tropsch Synthesis. ACS Catal. 2020, 10, 12967–12975. [Google Scholar] [CrossRef]
- Li, D.; Ichikuni, N.; Shimazu, S.; Uematsu, T. Hydrogenation of CO2 over sprayed Ru/TiO2 fine particles and strong metal–support interaction. Appl. Catal. A Gen. 1999, 180, 227–235. [Google Scholar] [CrossRef]
- Chang, F.-W.; Roselin, L.S.; Ou, T.-C. Hydrogen production by partial oxidation of methanol over bimetallic Au–Ru/Fe2O3 catalysts. Appl. Catal. A Gen. 2008, 334, 147–155. [Google Scholar] [CrossRef]
- Montini, T.; Melchionna, M.; Monai, M.; Fornasiero, P. Fundamentals and Catalytic Applications of CeO2-Based Materials. Chem. Rev. 2016, 116, 5987–6041. [Google Scholar] [CrossRef]
- Trejda, M.; Stawicka, K.; Ziolek, M. The role of Nb in the formation of sulphonic species in SBA-15 and MCF functionalised with MPTMS. Catal. Today 2012, 192, 130–135. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef] [Green Version]
- Lettow, J.S.; Han, Y.J.; Schmidt-Winkel, P.; Yang, P.; Zhao, D.; Stucky, G.D.; Ying, J.Y. Hexagonal to Mesocellular Foam Phase Transition in Polymer-Templated Mesoporous Silicas. Langmuir 2000, 16, 8291–8295. [Google Scholar] [CrossRef]
- Bavand, R.; Yelon, A.; Sacher, E. X-ray photoelectron spectroscopic and morphologic studies of Ru nanoparticles deposited onto highly oriented pyrolytic graphite. Appl. Surf. Sci. 2015, 355, 279–289. [Google Scholar] [CrossRef]
- Morgan, D.J. Resolving ruthenium: XPS studies of common ruthenium materials. Surf. Interface Anal. 2015, 47, 1072–1079. [Google Scholar] [CrossRef]
- Shen, J.; Adnot, A.; Kaliaguine, S. An ESCA study of the interaction of oxygen with the surface of ruthenium. Appl. Surf. Sci. 1991, 51, 47–60. [Google Scholar] [CrossRef]
- Kim, Y.; Gao, Y.; Chambers, S. Core-level X-ray photoelectron spectra and X-ray photoelectron diffraction of RuO2(110) grown by molecular beam epitaxy on TiO2(110). Appl. Surf. Sci. 1997, 120, 250–260. [Google Scholar] [CrossRef]
- Wang, X.; Lan, G.; Liu, H.; Zhu, Y.; Li, Y. Effect of acidity and ruthenium species on catalytic performance of ruthenium catalysts for acetylene hydrochlorination. Catal. Sci. Technol. 2018, 8, 6143–6149. [Google Scholar] [CrossRef]
- Ernst, M.A.; Sloof, W.G. Unraveling the oxidation of Ru using XPS. Surf. Interface Anal. 2008, 40, 334–337. [Google Scholar] [CrossRef]
- Larichev, Y.V.; Moroz, B.L.; Bukhtiyarov, V.I. Electronic state of ruthenium deposited onto oxide supports: An XPS study taking into account the final state effects. Appl. Surf. Sci. 2011, 258, 1541–1550. [Google Scholar] [CrossRef]
- McCoy, A.; Bogan, J.; Brady, A.; Hughes, G. Oxidation of ruthenium thin films using atomic oxygen. Thin Solid Films 2015, 597, 112–116. [Google Scholar] [CrossRef]
- Chakroune, N.; Viau, G.; Ammar, S.; Poul, L.; Veautier, D.; Chehimi, M.M.; Mangeney, C.; Villain, A.F.; Fiévet, F. Acetate- and Thiol-Capped Monodisperse Ruthenium Nanoparticles: XPS, XAS, and HRTEM Studies. Langmuir 2005, 21, 6788–6796. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Li, X.; Ruan, Q.; Tang, J. Ru and RuO x decorated carbon nitride for efficient ammonia photosynthesis. Nanoscale 2020, 12, 12329–12335. [Google Scholar] [CrossRef]
- Białas, A.; Rugała, K.; Czosnek, C.; Mordarski, G.; Gurgul, J. Copper Aluminum Spinels Doped with Cerium as Catalysts for NO Removal. Catalysts 2020, 10, 1388. [Google Scholar] [CrossRef]
- Gurgul, J.; Rinke, M.T.; Schellenberg, I.; Pöttgen, R. The antimonide oxides REZnSbO and REMnSbO (RE = Ce, Pr)—An XPS study. Solid State Sci. 2013, 17, 122–127. [Google Scholar] [CrossRef]
- Vilcocq, L.; Paez, A.; Freitas, V.D.S.; Veyre, L.; Fongarland, P.; Philippe, R. Unexpected reactivity related to support effects during xylose hydrogenation over ruthenium catalysts. RSC Adv. 2021, 11, 39387–39398. [Google Scholar] [CrossRef]
- Harth, F.M.; Goepel, M.; Gläser, R. Selective Hydrogenation of Glycolic Acid to Renewable Ethylene Glycol over Supported Ruthenium Catalysts. ChemCatChem 2022, 14, e202101275. [Google Scholar] [CrossRef]
- Parks, G.A.; de Bruyn, P.L. The zero point charge of oxides. J. Phys. Chem. 1962, 66, 967–973. [Google Scholar] [CrossRef]
- Li, C.; Shi, Y.; Zhang, Z.; Ni, J.; Wang, X.; Lin, J.; Lin, B.; Jiang, L. Improving the ammonia synthesis activity of Ru/CeO2 through enhancement of the metal–support interaction. J. Energy Chem. 2021, 60, 403–409. [Google Scholar] [CrossRef]
- Nakaji, Y.; Kobayashi, D.; Nakagawa, Y.; Tamura, M.; Okumura, K.; Tomishige, K. Mechanism of Formation of Highly Dispersed Metallic Ruthenium Particles on Ceria Support by Heating and Reduction. J. Phys. Chem. C 2019, 123, 20817–20828. [Google Scholar] [CrossRef]
Catalyst | BET, m2 g−1 | Pore Size a, nm | Pore Size b, nm | Pore Volume, cm3 g−1 |
---|---|---|---|---|
MCF | 726 | 23.9 | 13.6 | 2.22 |
Ru/MCF | 565 | 23.8 | 13.7 | 1.64 |
5Ce/MCF | 647 | 24.0 | 13.8 | 1.86 |
Ru/5Ce/MCF | 445 | 22.3 | 13.5 | 1.25 |
10Ce/MCF | 579 | 24.1 | 13.6 | 1.54 |
Ru/10Ce/MCF | 441 | 21.7 | 11.8 | 1.37 |
20Ce/MCF | 523 | 21.7 | 11.8 | 1.09 |
Ru/20Ce/MCF | 542 | 22.0 | 7.9 | 1.16 |
Ru Content, wt.% | Ce Content, wt.% | |||||
---|---|---|---|---|---|---|
Catalyst | Assumed | XPS | XRF | Assumed | ICP | XPS |
Ru/MCF | 1.0 | 1.1 | 0.8 | - | - | - |
Ru/5Ce/MCF | 1.0 | 2.3 | 1.1 | 5.0 | 3.5 | 2.2 |
Ru/10Ce/MCF | 1.0 | 2.3 | 1.1 | 10.0 | 9.5 | 2.6 |
Ru/20Ce/MCF | 1.0 | 2.3 | 1.1 | 20.0 | 20.8 | 3.5 |
BE, eV | Ru/MCF | Ru/5Ce/MCF | Ru/10Ce/MCF | Ru/20Ce/MCF |
---|---|---|---|---|
Ru 3p3/2, Ru0 Ru4+ | 461.7 (35%) 463.8 (65%) | 461.9 (50%) 464.1 (50%) | 461.9 (44%) 464.4 (56%) | 461.7 (43%) 463.8 (57%) |
Ru 3d5/2, Ru0 | 278.1 (24%) | 277.9 (8%) | ||
Ru0 | 279.7 (31%) | 280.2 (59%) | 279.9 (46%) | 280.0 (48%) |
Ru4+ | 280.3 (45%) | 281.0 (33%) | 280.8 (55%) | 281.0 (52%) |
Catalyst | Ru Dispersion, % | Ru Particle Size, nm | Ru Metal Surface Area, m2g −1 |
---|---|---|---|
Ru/MCF | 1.93 ± 0.33 | 68.9 ± 11.7 | 0.056 |
Ru/5Ce/MCF | 6.01 ± 1.04 | 22.1 ± 3.7 | 0.233 |
Ru/10Ce/MCF | 9.37 ± 1.62 | 14.2 ± 2.4 | 0.373 |
Ru/20Ce/MCF | 16.4 ± 2.8 | 8.1 ± 1.4 | 0.636 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Grzelak, K.; Trejda, M.; Gurgul, J. Impact of Cerium Oxide on the State and Hydrogenation Activity of Ruthenium Species Incorporated on Mesocellular Foam Silica. Materials 2022, 15, 4877. https://doi.org/10.3390/ma15144877
Grzelak K, Trejda M, Gurgul J. Impact of Cerium Oxide on the State and Hydrogenation Activity of Ruthenium Species Incorporated on Mesocellular Foam Silica. Materials. 2022; 15(14):4877. https://doi.org/10.3390/ma15144877
Chicago/Turabian StyleGrzelak, Kalina, Maciej Trejda, and Jacek Gurgul. 2022. "Impact of Cerium Oxide on the State and Hydrogenation Activity of Ruthenium Species Incorporated on Mesocellular Foam Silica" Materials 15, no. 14: 4877. https://doi.org/10.3390/ma15144877
APA StyleGrzelak, K., Trejda, M., & Gurgul, J. (2022). Impact of Cerium Oxide on the State and Hydrogenation Activity of Ruthenium Species Incorporated on Mesocellular Foam Silica. Materials, 15(14), 4877. https://doi.org/10.3390/ma15144877