Recent Progress on Graphene Flexible Photodetectors
Abstract
:1. Introduction
2. Two-Dimensional Graphene
2.1. Preparation of Graphene Transparent Conductive Films
2.2. Transfer Technology of Transparent Conductive Graphene Films
2.3. Indirect Transfer Method
2.4. Direct Transfer Method
3. Full Graphene PDs
4. Graphene Hybrid PDs
4.1. All-Carbon (Graphene–Carbon Allotrope) PDs
4.2. PDs Based on Chemically Doped Graphene
4.3. Graphene/Transition Metal Halide Heterostructure-Based PDs
4.4. Halide Perovskite-Type Graphene Heterostructure PDs
4.5. Other Graphene Hybrid PDs
5. Application of PDs in Flexible Wearable Electronics
6. Conclusions and Outlook
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wang, Y.; Sun, L.; Wang, C.; Yang, F.; Ren, X.; Zhang, X.; Dong, H.; Hu, W. Organic crystalline materials in flexible electronics. Chem. Soc. Rev. 2019, 48, 1492–1530. [Google Scholar] [CrossRef] [PubMed]
- Han, S.T.; Peng, H.; Sun, Q.; Venkatesh, S.; Chung, K.S.; Lau, S.C.; Zhou, Y.; Roy, V.A.L. An Overview of the Development of Flexible Sensors. Adv. Mater. 2017, 29, 1700375. [Google Scholar] [CrossRef] [PubMed]
- Dong, T.; Simões, J.; Yang, Z. Flexible photodetector based on 2D materials: Processing, architectures, and applications. Adv. Mater. Interfaces 2020, 7, 1901657. [Google Scholar] [CrossRef]
- Ali, A.; Shehzad, K.; Guo, H.; Wang, Z.; Wang, P.; Qadir, A.; Hu, W.; Ren, T.; Yu, B.; Xu, Y. High-performance, flexible graphene/ultra-thin silicon ultra-violet image sensor. In Proceedings of the 2017 IEEE International Electron Devices Meeting (IEDM), San Francisco, CA, USA, 2–6 December 2017; IEEE: Manhattan, NY, USA, 2017; Volume 12, pp. 861–864. [Google Scholar]
- Sun, H.; Tian, W.; Cao, F.; Xiong, J.; Li, L. Ultrahigh-Performance Self-Powered Flexible Double-Twisted Fibrous Broadband Perovskite Photodetector. Adv. Mater. 2018, 30, 1706986. [Google Scholar] [CrossRef] [PubMed]
- Qian, L.; Sun, Y.; Wu, M.; Li, C.; Xie, D.; Ding, L.; Shi, G. A lead-free two-dimensional perovskite for a high-performance flexible photoconductor and a light-stimulated synaptic device. Nanoscale 2018, 10, 6837–6843. [Google Scholar] [CrossRef]
- Fang, H.; Li, J.; Ding, J.; Yue, S.; Li, Q. An Origami Perovskite Photodetector with Spatial Recognition Ability. Appl. Mater. Interfaces 2017, 9, 10921–10928. [Google Scholar] [CrossRef] [PubMed]
- Hossain, R.F.; Bandyopadhyay, A.S.; Kaul, A.B. Vibrational spectroscopy on solution-dispersed MoS2 for inkjet-printed photodetectors. Emergent Mater. 2022, 5, 477–487. [Google Scholar] [CrossRef]
- Ge, Z.; Xu, N.; Zhu, Y.; Zhao, K.; Ma, Y.; Li, G.; Chen, Y. Visible to Mid-Infrared Photodetection Based on Flexible 3D Graphene/Organic Hybrid Photodetector with Ultrahigh Responsivity at Ambient Conditions. ACS Photonics 2022, 9, 59–67. [Google Scholar] [CrossRef]
- Liu, Y.F.; Feng, J.; Bi, Y.G.; Yin, D.; Sun, H.B. Recent Developments in Flexible Organic Light-Emitting Devices. Adv. Mater. Technol. 2019, 4, 1800371. [Google Scholar] [CrossRef] [Green Version]
- Chen, M. The Basic Category and Application of Graphene-Based Hybrid Photodetector; IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; p. 052092. [Google Scholar]
- Chen, X.; Shehzad, K.; Gao, L.; Long, M.; Guo, H.; Qin, S.; Wang, X.; Wang, F.; Shi, Y.; Hu, W.; et al. Graphene Hybrid Structures for Integrated and Flexible Optoelectronics. Adv. Mater. 2020, 32, e1902039. [Google Scholar] [CrossRef]
- Chen, G.; Zhou, Y.; Zhang, G.; Li, J.; Qi, X. Flexible, self-powered Bi2O2Se/Graphene photoeletrochemical photodetector based on solid-state electrolytes. Ceram. Int. 2021, 47, 25255–25263. [Google Scholar] [CrossRef]
- De Sanctis, A.; Jones, G.F.; Wehenkel, D.J.; Bezares, F.; Koppens, F.H.L.; Craciun, M.F.; Russo, S. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. Sci. Adv. 2017, 3, e1602617. [Google Scholar] [CrossRef] [Green Version]
- Khosravian, E.; Mashayekhi, H.R.; Farmani, A. Tunable plasmonics photodetector in near-infrared wavelengths using graphene chemical doping method. AEU Int. J. Electron. Commun. 2020, 127, 153472. [Google Scholar] [CrossRef]
- Huang, F.; Shen, L.; Zhou, S.; Wang, S.; Wang, S.; Deng, G.; Zhou, S. Flexible broadband photodetector based on laser-induced graphene/CH3NH3PbI3 composite. Opt. Mater. 2022, 128, 112364. [Google Scholar] [CrossRef]
- Yoo, T.J.; Kim, W.S.; Chang, K.E.; Kim, C.; Kwon, M.G.; Jo, J.Y.; Lee, B.H. High Gain and Broadband Absorption Graphene Photodetector Decorated with Bi2Te3 Nanowires. Nanomaterials 2021, 11, 755. [Google Scholar] [CrossRef]
- Andreoni, W. The Physics of Fullerene-Based and Fullerene-Related Materials; Springer: Dordrecht, The Netherlands, 2000; Volume 23, p. 448. [Google Scholar]
- Charlier, J.C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677. [Google Scholar] [CrossRef] [Green Version]
- Salvetat, J.P.; Bonard, J.M.; Bacsa, R. Physical Properties of Carbon Nanotubes; World Book Publishing Company: Chicago, IL, USA, 1998. [Google Scholar]
- Petroski, H. Technology of the Ubiquitous. Science 1990, 248, 23106. [Google Scholar]
- Lee, C.; Wei, X.; Kysar, J.W.; Hone, J. Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science 2008, 321, 385–388. [Google Scholar] [CrossRef]
- Novoselov, S.; Morozov, K.; Mohinddin, S.V.; Castro, T.M.G.; Neto, A.C.; Guinea, F. The electronic properties of graphene. Rev. Mod. Phys. 2009, 81, 109. [Google Scholar]
- Novoselov, K.S.; Geim, A.K.; Morozov, S.V.; Jiang, D.; Zhang, Y.; Dubonos, S.V.; Grigorieva, I.V.; Firsov, A.A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669. [Google Scholar] [CrossRef] [Green Version]
- Bolotin, K.I.; Sikes, K.J.; Jiang, Z.; Klima, M.; Fudenberg, G.; Hone, J.; Kim, P.; Stormer, H.L. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 2008, 146, 351–355. [Google Scholar] [CrossRef] [Green Version]
- Kim, K.S.; Yue, Z.; Jang, H.; Sang, Y.L.; Hong, B. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710. [Google Scholar] [CrossRef] [PubMed]
- Gürsoy, M.; Tak, E.; Karaman, M. Uniform deposition of large-area graphene films on copper using low-pressure chemical vapor deposition technique. Carbon Lett. 2022, 32, 781–787. [Google Scholar] [CrossRef]
- Yanru, H.; Xiaorang, T.; Guanchao, Z.; Lingling, D.; Ge, N.; Minsheng, L. Research Progress in Preparation and Applications of Graphene Films. Mater. Guide 2020, 34, 5048–5060. [Google Scholar]
- Chen, H.; Zhang, J.; Liu, X.; Liu, Z. Effect of Gas-Phase Reaction on the CVD Growth of Graphene. J. Phys. Chem. 2021, 7, 2101053. [Google Scholar] [CrossRef]
- Zhang, W.; Chuu, C.P.; Huang, J.-K.; Chen, C.-H.; Tsai, M.-L.; Chang, Y.-H.; Liang, C.-T.; Chen, Y.-Z.; Chueh, Y.-L.; He, J.-H.; et al. Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures. Sci. Rep. UK 2014, 4, 3826. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E. Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils Science. Science 2009, 324, 1312–1314. [Google Scholar] [CrossRef] [Green Version]
- Hackley, J.; Ali, D.; DiPasquale, J.; Demaree, J.D.; Richardson, C.J.K. Graphitic carbon growth on Si(111) using solid source molecular beam epitaxy. Appl. Phys. Lett. 2009, 95, 133114. [Google Scholar] [CrossRef]
- Li, X.; Colombo, L.; Rodney, S.; Ruoff, R.S. Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition. Adv. Mater. 2016, 28, 6247–6252. [Google Scholar] [CrossRef]
- An, H.; Lee, W.J.; Jung, J. Graphene synthesis on Fe foil using thermal CVD. Curr. Appl. Phys. 2011, 11, S81–S85. [Google Scholar] [CrossRef]
- Ago, H.; Ito, Y.; Mizuta, N.; Yoshida, K.; Hu, B.; Orofeo, C.M.; Tsuji, M.; Ikeda, K.I.; Mizuno, S. Epitaxial Chemical Vapor Deposition Growth of Single-Layer Graphene over Cobalt Film Crystallized on Sapphire. ACS Nano 2010, 4, 7407–7414. [Google Scholar] [CrossRef] [PubMed]
- Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M.S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30–35. [Google Scholar] [CrossRef] [PubMed]
- Guermoune, A.; Chari, T.; Popescu, F.; Sabri, S.S.; Guillemette, J.; Skulason, H.S.; Szkopek, T.; Siaj, M. Chemical vapor deposition synthesis of graphene on copper with methanol, ethanol, and propanol precursors—ScienceDirect. Carbon 2011, 49, 4204–4210. [Google Scholar] [CrossRef]
- Chen, X.; Zhang, L.; Chen, S. Large area CVD growth of graphene. Synth. Met. 2015, 210, 95–108. [Google Scholar] [CrossRef]
- Wang, Y.; Qing, F.Z.; Jia, Y.; Duan, Y.W.; Shen, C.Q.; Hou, Y.T.; Niu, Y.T.; Shi, H.F.; Li, X.S. Synthesis of large-area graphene films on rolled-up Cu foils by a “breathing” method. Chem. Eng. J. 2021, 405, 127014. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, L.; Jia, K.; Liu, X.; Cheng, T.; Peng, H.; Lin, L.; Liu, Z. New Growth Frontier: Superclean Graphene. ACS Nano 2020, 14, 10796–10803. [Google Scholar] [CrossRef]
- Lin, L.; Zhang, J.; Su, H.; Li, J.; Sun, L.; Wang, Z.; Xu, F.; Liu, C.; Lopatin, S.; Zhu, Y.; et al. Towards super-clean graphene. Nat Commun. 2019, 10, 1912. [Google Scholar] [CrossRef]
- Khan, A.; Habib, M.R.; Kumar, R.R.; Islam, S.M.; Arivazhagan, V.; Salman, M.; Yang, D.R.; Yu, X.G. Wetting behaviors and applications of metal-catalyzed CVD grown graphene. J. Mater. Chem. A 2018, 6, 22437–22464. [Google Scholar] [CrossRef]
- Kang, M.H.; Qiu, G.Y.; Chen, B.A.; Jouvray, A.; Teo, K.B.K.; Cepek, C.; Wu, L.; Kim, J.; Milne, W.I.; Cole, M.T. Transport in polymer-supported chemically-doped CVD graphene. J. Mater. Chem. C 2017, 5, 9886–9897. [Google Scholar] [CrossRef] [Green Version]
- Jiao, L.; Fan, B.; Xian, X.; Wu, Z.; Zhang, J.; Liu, Z. Creation of nanostructures with poly(methyl methacrylate)-mediated nanotransfer printing. J. Am. Chem. Soc. 2008, 130, 12612–12613. [Google Scholar] [CrossRef]
- Zhang, Z.; Du, J.; Zhang, D.; Sun, H.; Yin, L.; Ma, L.; Chen, J.; Ma, D.; Cheng, H.M.; Ren, W. Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat. Commun. 2017, 8, 14560. [Google Scholar] [CrossRef] [PubMed]
- Leong, W.S.; Wang, H.; Yeo, J.; Martin-Martinez, F.J.; Zubair, A.; Shen, P.C.; Mao, Y.; Palacios, T.; Buehler, M.J.; Hong, J.Y.; et al. Paraffin-enabled graphene transfer. Nat. Commun. 2019, 10, 867. [Google Scholar] [CrossRef] [PubMed]
- Yoon, T.; Shin, W.C.; Kim, T.Y.; Mun, J.H.; Kim, T.S.; Cho, B.J. Direct measurement of adhesion energy of monolayer graphene as-grown on copper and its application to renewable transfer process. Nano Lett. 2012, 12, 1448–1452. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.H.; Chen, T.H.; Chang, J.K.; Taur, J.I.; Lo, Y.Y.; Lee, W.L.; Chang, C.S.; Su, W.B.; Wu, C.I. A Direct and Polymer-Free Method for Transferring Graphene Grown by Chemical Vapor Deposition to Any Substrate. ACS Nano 2014, 8, 1784–1791. [Google Scholar] [CrossRef]
- Suriani, A.B.; Mohamed, A.; Alfarisa, S.; Mamat, M.H.; Ahmad, M.K.; Birowosuto, M.D.; Soga, T. Synthesis, transfer and application of graphene as a transparent conductive film: A review. Bull. Mater. Sci. 2020, 43, 310. [Google Scholar] [CrossRef]
- Yin, W.; Han, Q.; Yang, X. The progress of semiconductor photoelectric devices based on graphene. J. Phys. 2012, 61, 593–604. [Google Scholar]
- Xia, F.; Mueller, T.; Lin, Y.M.; Valdes-Garcia, A.; Avouris, P. Ultrafast graphene photodetector. Nat. Nanotechnol. 2009, 4, 839–843. [Google Scholar] [CrossRef] [Green Version]
- Mueller, T.; Xia, F.N.A.; Avouris, P. Graphene photodetectors for high-speed optical communications. Nat. Photonics 2010, 4, 297–301. [Google Scholar] [CrossRef] [Green Version]
- Dong, S.; Aivazian, G.; Jones, A.M.; Wang, Y.; Cobden, D.; Xu, X. New Aspects of Photocurrent Generation at Graphene pn Junctions Revealed by Ultrafast Optical Measurements. Int. J. Radiat. Oncol. Biol. Phys. 2011, 78, 150–155. [Google Scholar]
- Zheng, J.J.; Xu, X.; Zhang, Y.; Xie, Q.Y.; Wu, X.M.; Yu, K.H.; Wei, W. Photodetectors based on controllable growth of large-area graphene films. Thin Solid Film. 2020, 709, 138129. [Google Scholar] [CrossRef]
- Jia-Jin, Z.; Ya-Ru, W.; Ke-Han, Y.; Xiang-Xing, X.; Xue-Xi, S.; Er-Tao, H.; Wei, W. Field effect transistor photodetector based on graphene and perovskite quantum dots. Acta Phys. Sin. 2018, 67, 11. [Google Scholar]
- Nair, R.R.; Blake, P.; Grigorenko, A.N.; Novoselov, K.S.; Booth, T.J.; Stauber, T.; Peres, N.M.; Geim, A.K. Fine structure constant defines visual transparency of graphene. Science 2008, 320, 1308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Konstantatos, G.; Badioli, M.; Gaudreau, L.; Osmond, J.; Bernechea, M.; De Arquer, P.G.; Gatti, F.; Koppens, F.H.L. Hybrid graphene-quantum dot phototransistors with ultrahigh gain. Nat. Nanotechnol. 2012, 7, 363–368. [Google Scholar] [CrossRef] [PubMed]
- Ryzhii, V.; Ryzhii, M.; Mitin, V.; Otsuji, T. Terahertz and infrared photodetection using p-i-n multiple-graphene-layer structures. J. Appl. Phys. 2010, 107, 054512. [Google Scholar] [CrossRef] [Green Version]
- Cong, J.; Khan, A.; Li, J.; Wang, Y.; Xu, M.; Yang, D.; Yu, X. Direct Growth of Graphene Nanowalls on Silicon Using Plasma-Enhanced Atomic Layer Deposition for High-Performance Si-Based Infrared Photodetectors. ACS Appl. Electron. Mater. 2021, 3, 5048–5058. [Google Scholar] [CrossRef]
- Maurizio, C. Design of Resonant Cavity-Enhanced Schottky Graphene/Silicon Photodetectors at 1550 nm. J. Lightwave Technol. 2018, 36, 1766–1774. [Google Scholar]
- Xu, J.; Song, Y.J.; Park, J.H.; Lee, S. Graphene/black phosphorus heterostructured photodetector. Solid-State Electron. 2018, 144, 86–89. [Google Scholar] [CrossRef]
- Ming, H. Performance Optimization of Graphene-Based Photoelectric Device. Master’s Thesis, Zhejiang University, Hangzhou, China, 2018. [Google Scholar]
- Thompson, J.E.; Smalley, D.; Ishigami, M. Solar-Blind Ultraviolet Photodetectors Based on Vertical Graphene-Hexagonal Boron Nitride Heterostructures. MRS Adv. 2020, 5, 1993–2002. [Google Scholar] [CrossRef]
- Long, M.; Peng, W.; Fang, H.; Hu, W. Progress, Challenges, and Opportunities for 2D Material Based Photodetectors. Adv. Funct. Mater. 2018, 29, 1803807. [Google Scholar] [CrossRef]
- Gan, X.T.; Shiue, R.J.; Gao, Y.D.; Meric, I.; Heinz, T.F.; Shepard, K.; Hone, J.; Assefa, S.; Englund, D. Chip-integrated ultrafast graphene photodetector with high responsivity. Nat. Photonics 2013, 7, 883–887. [Google Scholar] [CrossRef]
- Wang, X.M.; Cheng, Z.Z.; Xu, K.; Tsang, H.K.; Xu, J.B. High-responsivity graphene/silicon-heterostructure waveguide photodetectors. Nat. Photonics 2013, 7, 888–891. [Google Scholar] [CrossRef]
- Long, M.; Liu, E.; Wang, P.; Gao, A.; Xia, H.; Luo, W.; Wang, B.; Zeng, J.; Fu, Y.; Xu, K.; et al. Broadband Photovoltaic Detectors Based on an Atomically Thin Heterostructure. Nano Lett. 2016, 16, 2254–2259. [Google Scholar] [CrossRef] [PubMed]
- Niu, G.; Capellini, G.; Lupina, G.; Niermann, T.; Salvalaglio, M.; Marzegalli, A.; Schubert, M.A.; Zaumseil, P.; Krause, H.M.; Skibitzki, O. Photodetection in Hybrid Single-Layer Graphene/Fully Coherent Germanium Island Nanostructures Selectively Grown on Silicon Nanotip Patterns. ACS Appl. Mater. 2015, 8, 10336. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qin, S.; Jiang, H.; Du, Q.; Nie, Z.; Wang, X.; Wang, W.; Wang, X.; Xu, Y.; Shi, Y.; Zhang, R. Planar graphene-C60-graphene heterostructure for sensitive UV-Visible photodetection. Carbon 2019, 146, 486–490. [Google Scholar] [CrossRef]
- Qin, S.; Du, Q.; Dong, R.; Yan, X.; Wang, F. Robust, flexible and broadband photodetectors based on van der Waals graphene/C60 heterostructures. Carbon 2020, 167, 668–674. [Google Scholar] [CrossRef]
- Pyo, S.; Kim, W.; Jung, H.; Choi, J.; Kim, J. Heterogeneous Integration of Carbon-Nanotube–Graphene for High-Performance, Flexible, and Transparent Photodetectors. Small 2017, 13, 1700918. [Google Scholar] [CrossRef]
- Shulaker, M.M.; Hills, G.; Patil, N.; Wei, H.; Chen, H.Y.; Wong, H.S.; Mitra, S. Carbon nanotube computer. Nature 2013, 501, 526–530. [Google Scholar] [CrossRef]
- Lin, X.; Liu, P.; Wei, Y.; Li, Q.; Wang, J.; Wu, Y.; Feng, C.; Zhang, L.; Fan, S.; Jiang, K. Development of an ultra-thin film comprised of a graphene membrane and carbon nanotube vein support. Nat. Commun. 2013, 4, 2920. [Google Scholar] [CrossRef]
- Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615. [Google Scholar] [CrossRef]
- Li, C.Y.; Li, Z.; Zhu, H.W.; Wang, K.L.; Wei, J.Q.; Li, X.A.; Sun, P.Z.; Zhang, H.; Wu, D.H. Graphene Nano-“patches” on a Carbon Nanotube Network for Highly Transparent/Conductive Thin Film Applications. J. Phys. Chem. C 2010, 114, 14008–14012. [Google Scholar] [CrossRef]
- Gabor, N.M.; Zhong, Z.; Bosnick, K.; Park, J.; McEuen, P.L. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 2009, 325, 1367–1371. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, D.M.; Liu, C.; Ren, W.C.; Cheng, H.M. A review of carbon nanotube- and graphene-based flexible thin-film transistors. Small 2013, 9, 1188–1205. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Liu, Y.; Qin, S.; Xu, Y.; Zhang, R. Graphene-carbon nanotube hybrid films for high-performance flexible photodetectors. Nano Res. 2017, 10, 1880–1887. [Google Scholar] [CrossRef]
- Li, X.L.; Jia, Y.; Cao, A.Y. Tailored Single-Walled Carbon Nanotube-CdS Nanoparticle Hybrids for Tunable Optoelectronic Devices. Acs Nano 2010, 4, 506–512. [Google Scholar] [CrossRef]
- Engel, M.; Steiner, M.; Lombardo, A.; Ferrari, A.C.; Hneysen, H.V.; Avouris, P.; Krupke, R. Light-matter interaction in a microcavity-controlled graphene transistor. Nat. Commun. 2011, 3, 906. [Google Scholar] [CrossRef] [Green Version]
- Muench, J.E.; Ruocco, A.; Giambra, M.A.; Miseikis, V.; Zhang, D.; Wang, J.; Watson, H.F.Y.; Park, G.C.; Akhavan, S.; Sorianello, V.; et al. Waveguide-Integrated, Plasmonic Enhanced Graphene Photodetectors. Nano Lett. 2019, 19, 7632–7644. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Bhattacharyya, B.; Srivastava, A.K.; Senguttuvan, T.D.; Husale, S. High performance broadband photodetector using fabricated nanowires of bismuth selenide. Sci. Rep. UK 2016, 6, 19138. [Google Scholar] [CrossRef] [Green Version]
- Chen, Z.; Xiang, Q.; Long, R.; Hao, G.; Liu, Y.; Li, J.; Zhong, J. Photoresponse properties of ultrathin Bi2Se3 nanosheets synthesized by hydrothermal intercalation and exfoliation route. Appl. Surf. Sci. 2014, 316, 341–347. [Google Scholar]
- Huang, H.; Ren, X.H.; Li, Z.J.; Wang, H.D.; Huang, Z.Y.; Qiao, H.; Tang, P.H.; Zhao, J.L.; Liang, W.Y.; Ge, Y.Q.; et al. Two-dimensional bismuth nanosheets as prospective photo-detector with tunable optoelectronic performance. Nanotechnology 2018, 29, 6523–6528. [Google Scholar] [CrossRef]
- Lawal, A.; Shaari, A.; Ahmed, R.; Jarkoni, N. First-principles investigations of electron-hole inclusion effects on optoelectronic properties of Bi2Te3, a topological insulator for broadband photodetector. Phys. B 2017, 520, 69–75. [Google Scholar] [CrossRef]
- Yao, J.D.; Zheng, Z.Q.; Yang, G.W. Layered-material WS2/topological insulator Bi2Te3 heterostructure photodetector with ultrahigh responsivity in the range from 370 to 1550 nm. J. Mater. Chem. C 2016, 4, 7831–7840. [Google Scholar] [CrossRef]
- Qiao, H.; Yuan, J.; Xu, Z.; Chen, C.; Lin, S.; Wang, Y.; Song, J.; Liu, Y.; Khan, Q.; Hoh, H.Y.; et al. Broadband Photodetectors Based on Graphene–Bi2Te3 Heterostructure. ACS Nano 2015, 9, 1886–1894. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Fang, W.; Zhang, K.; Zhang, W.; Li, L.J. Photoelectrical Response in Single-Layer Graphene Transistors. Small 2009, 5, 2005–2011. [Google Scholar] [CrossRef]
- Wang, B.; Huang, Z.; Tang, P.; Luo, S.; Liu, Y.; Li, J.; Qi, X. One-pot synthesized Bi2Te3/graphene for a self-powered photoelectrochemical-type photodetector. Nanotechnology 2020, 31, 115201. [Google Scholar] [CrossRef] [PubMed]
- Xiong, Y.; Liao, Q.; Huang, Z.; Huang, X.; Ke, C.; Zhu, H.; Dong, C.; Wang, H.; Xi, K.; Zhan, P.; et al. Ultrahigh Responsivity Photodetectors of 2D Covalent Organic Frameworks Integrated on Graphene. Adv. Mater. 2020, 32, e1907242. [Google Scholar] [CrossRef] [PubMed]
- Boukhoubza, I.; Khenfouch, M.; Achehboune, M.; Leontie, L.; Jorio, A. Graphene oxide coated flower-shaped ZnO nanorods: Optoelectronic properties. J. Alloy. Compd. 2020, 831, 154874. [Google Scholar] [CrossRef]
- Sahatiya, P.; Jones, S.S.; Gomathi, P.T.; Badhulika, S. Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation. 2d Mater. 2017, 4, 025053. [Google Scholar] [CrossRef]
- Chen, D.; Xin, Y.; Lu, B.; Pan, X.; Huang, J.; He, H.; Ye, Z. Self-powered ultraviolet photovoltaic photodetector based on graphene/ZnO heterostructure. Appl. Surf. Sci. 2020, 529, 147087. [Google Scholar] [CrossRef]
- Fang, L. Controlable Synthesis of ZnO Nanohierarchitectures and Their Electrochemical Properties. Ph.D. Thesis, Northwestern Polytechnical University, Xi’an, China, 2015. [Google Scholar]
- Liu, J.; Hu, Z.Y.; Peng, Y.; Huang, H.W.; Li, Y.; Wu, M.; Ke, X.X.; Tendeloo, G.V.; Su, B.L. 2D ZnO mesoporous single-crystal nanosheets with exposed {0001} polar facets for the depollution of cationic dye molecules by highly selective adsorption and photocatalytic decomposition. Appl. Catal. B Environ. 2016, 181, 138–145. [Google Scholar] [CrossRef]
- Dang, V.Q.; Trung, T.Q.; Duy, L.T.; Kim, B.Y.; Siddiqui, S.; Lee, W.; Lee, N.E. High-Performance Flexible Ultraviolet (UV) Phototransistor Using Hybrid Channel of Vertical ZnO Nanorods and Graphene. ACS Appl. Mater. Interfaces 2015, 7, 11032–11040. [Google Scholar] [CrossRef]
- Dawood, O.M.; Gupta, R.K.; Monteverde, U.; Alqahtani, F.H.; Migliorato, M.A. Dynamic modulation of the Fermi energy in suspended graphene backgated devices. Sci. Technol. Adv. Mater. 2019, 20, 568–579. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; Zhu, L.; Du, C. Flexible Difunctional (Pressure and Light) Sensors Based on ZnO Nanowires/Graphene Heterostructures. Adv. Mater. Interfaces 2020, 7, 1901932. [Google Scholar] [CrossRef]
- Ju, D.; Liu, X.H.; Zhu, Z.F.; Wang, S.L.; Liu, S.T.; Gu, Y.; Chang, J.H.; Liu, Q.Q.; Zou, Y.S. Solution processed membrane-based wearable ZnO/graphene Schottky UV photodetectors with imaging application. Nanotechnology 2019, 30, 375701. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.T.; Liu, X.H.; Zhu, Z.F.; Wang, S.L.; Gu, Y.; Shan, F.K.; Zou, Y.S. Improved flexible ZnO/CsPbBr3/Graphene UV photodetectors with interface optimization by solution process. Mater. Res. Bull. 2020, 130, 110956. [Google Scholar] [CrossRef]
- Liu, Q.; Tian, H.; Li, J.; Hu, A.; Guo, X. Hybrid Graphene/Cu2O Quantum Dot Photodetectors with Ultrahigh Responsivity. Adv. Opt. Mater. 2019, 7, 1900455. [Google Scholar] [CrossRef]
- Mittiga, A.; Salza, E.; Sarto, F.; Tucci, M.; Vasanthi, R. Heterojunction solar cell with 2% efficiency based on a Cu2O substrate. Appl. Phys. Lett. 2006, 88, 247. [Google Scholar] [CrossRef]
- Li, Y.F.; Dong, F.X.; Chen, Y.; Zhang, X.L.; Wang, L.; Bi, Y.G.; Tian, Z.N.; Liu, Y.F.; Feng, J.; Sun, H.B. As-grown graphene/copper nanoparticles hybrid nanostructures for enhanced intensity and stability of surface plasmon resonance. Sci. Rep. 2016, 6, 37190. [Google Scholar] [CrossRef] [Green Version]
- Cong, L.J.; Zhou, H.T.; Chen, M.Z.; Wang, H.B.; Chen, H.; Ma, J.G.; Yan, S.Y.; Li, B.S.; Xu, H.Y.; Liu, Y.C. An ultra-fast, self-powered and flexible visible-light photodetector based on graphene/Cu2O/Cu gradient heterostructures. J. Mater. Chem. C 2021, 9, 2806–2814. [Google Scholar] [CrossRef]
- Garcia, B.M.; Polovitsyn, A.; Pratoa, M.; Moreels, I. Efficient charge transfer in solution-processed PbS quantum dot-reduced graphene oxide hybrid materials. J. Mater. Chem. C Mater. Opt. Electron. Devices 2015, 3, 7088–7095. [Google Scholar] [CrossRef] [Green Version]
- Sun, T.; Wang, Y.; Yu, W.; Wang, Y.; Dai, Z.; Liu, Z.; Shivananju, B.N.; Zhang, Y.; Fu, K.; Shabbir, B.J.S. Photodetectors: Flexible Broadband Graphene Photodetectors Enhanced by Plasmonic Cu3xP Colloidal Nanocrystals (Small 42/2017). Small 2017, 13, 24217. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J.N.; Strano, M.S. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 2012, 7, 699–712. [Google Scholar] [CrossRef] [PubMed]
- He, H.-Y.; He, Z.; Shen, Q. Excellent photoresponse performances of graphene/metallic WSe2 nanosheet heterostructure films. Mat. Sci. Semicond. Proc. 2020, 107, 104851. [Google Scholar] [CrossRef]
- Splendiani, A.; Sun, L.; Zhang, Y.; Li, T.; Kim, J.; Chim, C.Y.; Galli, G.; Wang, F. Emerging photoluminescence in monolayer MoS2. Nano Lett. 2010, 10, 1271–1275. [Google Scholar] [CrossRef]
- Huang, Y.L.; Chen, Y.F.; Zhang, W.J.; Quek, S.Y.; Chen, C.H.; Li, L.J.; Hsu, W.T.; Chang, W.H.; Zheng, Y.J.; Chen, W.; et al. Bandgap tunability at single-layer molybdenum disulphide grain boundaries. Nat. Commun. 2015, 6, 6298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Roy, K.; Padmanabhan, M.; Goswami, S.; Sai, T.P.; Ramalingam, G.; Raghavan, S.; Ghosh, A. Graphene-MoS2 hybrid structures for multifunctional photoresponsive memory devices. Nat. Nanotechnol. 2013, 8, 826–830. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Xu, W.; Sheng, Y.; Huang, H.; Warner, J.H. Interfaces, Symmetry-Controlled Reversible Photovoltaic Current Flow in Ultrathin All 2D Vertically Stacked Graphene/MoS2 /WS2/Graphene Devices. ACS Appl. Mater. 2019, 11, 2234–2242. [Google Scholar] [CrossRef]
- Hu, J.S.; Duan, W.; He, H.; Lv, H.; Ma, X. A promising strategy to tune the Schottky barrier of a MoS2(1x)Se2x/graphene heterostructure by asymmetric Se doping. J. Mater. Chem. C 2019, 25, 7798–7805. [Google Scholar] [CrossRef]
- Lee, C.H.; Lee, G.H.; Zande, A.; Chen, W.; Li, Y.; Han, M.; Xu, C.; Arefe, G.; Nuckolls, C.; Heinz, T.F.N.N. Atomically thin p–n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 2014, 19, 676–681. [Google Scholar] [CrossRef] [Green Version]
- Kang, M.A.; Kim, S.J.; Song, W.; Chang, S.J.; Park, C.Y.; Myung, S.; Lim, J.; Lee, S.S.; An, K.S. Fabrication of flexible optoelectronic devices based on MoS2/graphene hybrid patterns by a soft lithographic patterning method. Carbon 2017, 116, 167–173. [Google Scholar] [CrossRef]
- Liu, B.; Chen, Y.; You, C.; Liu, Y.; Zhang, Y. High performance photodetector based on graphene/MoS2/graphene lateral heterostrurcture with Schottky junctions. J. Alloy. Compd. 2018, 779, 100106. [Google Scholar] [CrossRef]
- Chen, D.R.; Hofmann, M.; Yao, H.; Chiu, S.K.; Chen, S.H.; Luo, Y.R.; Hsu, C.C.; Hsieh, Y.P. Lateral 2D material heterojunction photodetectors with ultra-high speed and detectivity. ACS Appl. Mater. Interfaces 2019, 11, 6384–6388. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Wang, Z.; Wang, H.; Meng, F. Graphene/MoS2/Graphene Vertical Heterostructure-Based Broadband Photodetector with High Performance. Adv. Mater. Interfaces 2020, 8, 2001730. [Google Scholar] [CrossRef]
- Ko, J.S.; Dong, H.S.; Lee, W.J.; Chan, W.J.; Choi, S.H. All-two-dimensional semitransparent and flexible photodetectors employing graphene/MoS2/graphene vertical heterostructures. J. Alloy. Compd. 2020, 864, 158118. [Google Scholar] [CrossRef]
- Pataniya, P.M.; Sumesh, C.K. WS2 Nanosheet/Graphene Heterostructures for Paper-Based Flexible Photodetectors. ACS Appl. Nano Mater. 2020, 3, 6935–6944. [Google Scholar] [CrossRef]
- Selamneni, V.; Kanungo, S.; Sahatiya, P. Large area growth of SnS2/graphene on cellulose paper as a flexible broadband photodetector and investigating its band structure through first principles calculations. Mater. Adv. 2021, 2, 2373–2381. [Google Scholar] [CrossRef]
- Jang, C.W.; Kim, J.M.; Choi, S.H. Lamination-produced semi-transparent/flexible perovskite solar cells with doped-graphene anode and cathode. J. Alloy. Compd. 2019, 775, 905–911. [Google Scholar] [CrossRef]
- Du, Y.P.; Yin, Z.Y.; Rui, X.H.; Zeng, Z.Y.; Wu, X.J.; Liu, J.Q.; Zhu, Y.Y.; Zhu, J.X.; Huang, X.; Yan, Q.Y.; et al. A facile, relative green, and inexpensive synthetic approach toward large-scale production of SnS2 nanoplates for high-performance lithium-ion batteries. Nanoscale 2013, 5, 1456–1459. [Google Scholar] [CrossRef] [PubMed]
- Fang, F.; Li, H.; Yao, H.; Jiang, K.; Liu, Z.; Lin, C.; Chen, F.; Wang, Y.; Liu, L. Two-Dimensional Hybrid Composites of SnS2 Nanosheets Array Film with Graphene for Enhanced Photoelectric Performance. Nanomaterials 2019, 9, 1122. [Google Scholar] [CrossRef] [Green Version]
- Rao, C.; Biswas, K.; Subrahmanyam, K.S.; Govindaraj, A. Graphene, the new nanocarbon. J. Mater. Chem. 2009, 19, 2457–2469. [Google Scholar] [CrossRef]
- Tweedie, M.; Lau, C.; Hou, L.; Wang, X.; Sheng, Y.; Warner, J. Transparent ultrathin all-two-dimensional lateral Gr: WS2: Gr photodetector arrays on flexible substrates and their strain induced failure mechanisms. Mater. Today Adv. 2020, 6, 100067. [Google Scholar] [CrossRef]
- Fan, X.; Jiang, Y.; Zhuang, X.; Liu, H.; Xu, T.; Zheng, W.; Fan, P.; Li, H.; Wu, X.; Zhu, X.; et al. Broken Symmetry Induced Strong Nonlinear Optical Effects in Spiral WS2 Nanosheets. ACS Nano 2017, 11, 4892–4898. [Google Scholar] [CrossRef] [PubMed]
- Nedelcu, G.; Protesescu, L.; Yakunin, S.; Bodnarchuk, M.I.; Grotevent, M.J.; Kovalenko, M.V. Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I). Nano Lett. 2015, 15, 5635–5640. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Han, K. Charge-Carrier Dynamics of Lead-Free Halide Perovskite Nanocrystals. ACC Chem. Res. 2019, 52, 3188–3198. [Google Scholar] [CrossRef] [PubMed]
- Diau, E.W.G.; Jokar, E.; Rameez, M. Strategies to Improve Performance and Stability for Tin-Based Perovskite Solar Cells. ACS Energy Lett. 2019, 4, 1930–1937. [Google Scholar] [CrossRef]
- Dang, V.Q.; Han, G.S.; Trung, T.Q.; Duy, L.T.; Jin, Y.U.; Hwang, B.U.; Jung, H.S.; Lee, N.E. Methylammonium lead iodide perovskite-graphene hybrid channels in flexible broadband phototransistors. Carbon 2016, 105, 353–361. [Google Scholar] [CrossRef]
- Liu, D.; Kelly, T.L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques. Nat. Photonics 2014, 8, 133–138. [Google Scholar] [CrossRef]
- Zou, Y.; Zou, T.; Zhao, C.; Wang, B.; Guo, C. A Highly Sensitive Single Crystal Perovskite–Graphene Hybrid Vertical Photodetector. Small 2020, 16, 2000733. [Google Scholar] [CrossRef]
- Lee, Y.H.; Park, S.; Won, Y.; Mun, J.; Ha, J.H.; Lee, J.H.; Lee, S.H.; Park, J.; Yeom, J.; Rho, J.; et al. Flexible high-performance graphene hybrid photodetectors functionalized with gold nanostars and perovskites. NPG Asia Mater. 2020, 12, 1460. [Google Scholar] [CrossRef]
- Sun, Z.; Aigouy, L.; Chen, Z. Plasmonic-enhanced perovskite–graphene hybrid photodetectors. Nanoscale 2016, 8, 7377–7383. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y.; Lu, Y.; Xu, W.; Mu, H.; Chen, C.; Qiao, H.; Song, J.; Li, S.; Sun, B. Phototransistors: Hybrid Graphene–Perovskite Phototransistors with Ultrahigh Responsivity and Gain (Advanced Optical Materials 10/2015). Adv. Opt. Mater. 2015, 3, 1303. [Google Scholar] [CrossRef]
- Che, Y.; Cao, X.; Zhang, Y.; Yao, J. High-performance photodetector using CsPbBr3 perovskite nanocrystals and graphene hybrid channel. J. Mater. Sci. 2021, 56, 2341–2346. [Google Scholar] [CrossRef]
- Zhou, G.; Sun, R.; Xiao, Y.; Abbas, G.; Peng, Z. A High-Performance Flexible Broadband Photodetector Based on Graphene–PTAA–Perovskite Heterojunctions. Adv. Electron. Mater. 2021, 7, 2000522. [Google Scholar] [CrossRef]
- Yu, Y.F.; Miao, F.; He, J.; Ni, Z.H. Photodetecting and light-emitting devices based on two-dimensional materials. Chin. Phys. B 2017, 26, 2675–2688. [Google Scholar] [CrossRef]
- Gebril, W.; Salman, H.; Manasreh, M.O. Near-Infrared Photodetectors Based on Hybrid Graphene-Colloidal PbSe Quantum Dots. MRS Adv. 2020, 5, 2273–2280. [Google Scholar] [CrossRef]
- Ahn, S.; Chen, W.; Moreno-Gonzalez, M.A.; Lockett, M.; Wang, J.; Vazquez-Mena, O. Enhanced Charge Transfer and Responsivity in Hybrid Quantum Dot/Graphene Photodetectors Using ZnO as Intermediate Electron-Collecting Layer. Adv. Electron. Mater. 2020, 6, 2000014. [Google Scholar] [CrossRef]
- Shin, D.H.; Jang, C.W.; Kim, J.H.; Kim, J.M.; Lee, H.S.; Seo, S.W.; Kim, S.; Choi, S.H. Enhancement of efficiency and long-term stability in graphene/Si-quantum-dot heterojunction photodetectors by employing bis(trifluoromethanesulfonyl)-amide as a dopant for graphene. J. Mater. Chem. C 2017, 5, 12737–12743. [Google Scholar] [CrossRef]
- Coy-Diaz, H.; Avila, J.; Chen, C.; Addou, R.; Batzill, M. Direct Observation of Interlayer Hybridization and Dirac Relativistic Carriers in Graphene/MoS 2 van der Waals Heterostructures. Nano Lett. 2015, 15, 14134–14137. [Google Scholar] [CrossRef]
- Tao, Z.J.; Zhou, D.Y.; Yin, H.; Cai, B.F.; Huo, T.T.; Ma, J.; Di, Z.F.; Hu, N.T.; Yang, Z.; Su, Y.J. Graphene/GaAs heterojunction for highly sensitive, self-powered Visible/NIR photodetectors. Mat. Sci. Semicond. Proc. 2020, 111, 104989. [Google Scholar] [CrossRef]
- Tian, H.J.; Liu, Q.L.; Yue, H.; Hu, A.Q.; Guo, X. Hybrid graphene/n-GaAs photodiodes with high specific detectivity and high speed. Chin. Opt. 2021, 14, 206. [Google Scholar]
- Liu, H.; Zhu, X.; Sun, X.; Zhu, C.; Huang, W.; Zhang, X.; Zheng, B.; Zou, Z.; Lou, Z.; Wang, X.; et al. Self-Powered Broadband Photodetectors Based on Vertically Stacked WSe2/Bi2Te3 p-n Heterojunctions. ACS Nano 2019, 13, 13573–13580. [Google Scholar] [CrossRef]
- Boruah, B.D.; Ferry, D.B.; Mukherjee, A.; Misra, A. Few-layer graphene/ZnO nanowires based high performance UV photodetector. Nanotechnology 2015, 26, 235703. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Wu, J.; Feng, Q.; Mao, N.; Wang, C.; Zhang, J. High responsivity and gate tunable graphene-MoS2 hybrid phototransistor. Small 2014, 10, 2300–2306. [Google Scholar] [CrossRef] [PubMed]
- Gao, A.Y.; Liu, E.F.; Long, M.S.; Zhou, W.; Wang, Y.Y.; Xia, T.L.; Hu, W.D.; Wang, B.G.; Miao, F. Gate-tunable rectification inversion and photovoltaic detection in graphene/WSe2 heterostructures. Appl. Phys. Lett. 2016, 108, 223501. [Google Scholar] [CrossRef]
- Jin, L.; Wei, M.; Zhang, D.; Zhang, L.; Zhang, H. High-Performance Multifunctional Photodetector and THz Modulator Based on Graphene/TiO2/p-Si Heterojunction. Nanoscale Res. Lett. 2021, 12, 443002. [Google Scholar]
- Yang, H.; Xiao, Y.; Zhang, K.; Chen, Z.; Pan, J.; Zhuo, L.; Zhong, Y.; Zheng, H.; Zhu, W.; Yu, J. Self-powered and high-performance all-fiber integrated photodetector based on graphene/palladium diselenide heterostructures. Opt. Express 2021, 29, 15631–15640. [Google Scholar] [CrossRef]
- Che, Y.L.; Zhang, Y.T.; Cao, X.L.; Song, X.X.; Zhang, H.T.; Cao, M.X.; Dai, H.T.; Yang, J.B.; Zhang, G.Z.; Yao, J.Q. High-performance PbS quantum dot vertical field-effect phototransistor using graphene as a transparent electrode. Appl. Phys. Lett. 2016, 109, 263101. [Google Scholar] [CrossRef]
- Liu, Y.W.; Liu, B.Y.; Wu, Y.; Chen, X.Q.; Chen, A.B.; Chu, F.H.; Feng, S.B.; Zhao, C.; Yu, H.W. Modification of graphene photodetector by TiO2 prepared by oxygen plasma. J. Mater. Sci. 2021, 56, 10938–10946. [Google Scholar] [CrossRef]
- Pataniya, P.M.; Sumesh, C.K. Low cost and flexible photodetector based on WSe2 Nanosheets/Graphite heterostructure. Synth. Met. 2020, 265, 116400. [Google Scholar] [CrossRef]
- Li, C.; Chen, H.; Zhang, S.; Yang, W.; Gao, M.; Huang, P.; Wu, M.; Sun, Z.; Wang, J.; Wei, X. Wearable and Biocompatible Blood Oxygen Sensor Based on Heterogeneously Integrated Lasers on a Laser-Induced Graphene Electrode. ACS Appl. Electron. Mater. 2022, 4, 1583–1591. [Google Scholar] [CrossRef]
- Lee, W.; Liu, Y.; Lee, Y.; Sharma, B.K.; Shinde, S.M.; Kim, S.D.; Nan, K.; Yan, Z.; Han, M.; Huang, Y.; et al. Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 2018, 9, 1417. [Google Scholar] [CrossRef]
- Kang, P.; Wang, M.C.; Knapp, P.M.; Nam, S. Crumpled Graphene Photodetector with Enhanced, Strain-Tunable, and Wavelength-Selective Photoresponsivity. Adv. Mater. 2016, 28, 4639–4645. [Google Scholar] [CrossRef] [PubMed]
- Jie, D.; Fang, H.; Lian, Z.; Lv, Q.; Sun, J.L.; Yan, Q. High-performance stretchable photodetector based on CH3NH3PbI3 microwires and graphene. Nanoscale 2018, 10, 10538–10544. [Google Scholar]
- Choi, C.; Choi, M.K.; Liu, S.Y.; Kim, M.S.; Park, O.K.; Im, C.; Kim, J.; Qin, X.L.; Lee, G.J.; Cho, K.W.; et al. Human eye-inspired soft optoelectronic device using high-density MoS2-graphene curved image sensor array. Nat. Commun. 2017, 8, 1664. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lien, D.H.; Kao, Z.K.; Huang, T.H.; Liao, Y.C.; Lee, S.C.; He, J.H. All-printed paper memory. ACS Nano 2014, 8, 7613–7619. [Google Scholar] [CrossRef]
- Cai, S.; Zuo, C.; Zhang, J.; Liu, H.; Fang, X. A Paper-based Wearable Photodetector for Simultaneous UV Intensity and Dosage Measurement. Adv. Funct. Mater. 2021, 31, 100026. [Google Scholar] [CrossRef]
- Marais, A.; Utsel, S.; Gustafsson, E.; Wagberg, L. Towards a super-strainable paper using the Layer-by-Layer technique. Carbohyd. Polym. 2014, 100, 218–224. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.H.; Tsai, D.S.; Wei, T.C.; Lien, D.H.; Ke, J.J.; Su, C.H.; Sun, J.Y.; Liao, Y.C.; He, J.H. Highly Deformable Origami Paper Photodetector Arrays. ACS Nano 2017, 11, 10230–10235. [Google Scholar] [CrossRef]
Materials | Wavelength (nm) | R (A/W) | D* (Jones) | Time | Ref. |
---|---|---|---|---|---|
I Graphene-carbon (allotrope) | |||||
Graphene/SWNTs | 532 | 51 | — | 40 ms | [78] |
Graphene/C60 | 405 | 104 | — | 76 µs | [70] |
II Graphene chemical doping | |||||
Graphene/Bi2Te3 | 633 | 20.5 | — | 210 µs | [146] |
Bi2Te3 (NWs)/graphene | 2200 | 0.09 ma/W | — | — | [17] |
ZnO NRs/graphene | 365 | 2.5 × 106 | — | — | [96] |
Graphene/Cu2O/Cu | 550 | 86 ma/W | — | 4.1 µs | [104] |
III Graphene-TMDs | |||||
Graphene/MoS2/graphenelateral heterostructure | 532 | 2 × 103 ma/W | 1013 | 1.8 s | [116] |
Graphene/MoS2/graphene vertical heterostructure | 2000 | 376 | 2.9 × 1010 | — | [118] |
TFSA-GR/MoS2/TETA-GR | 532 | 0.128 | 1.69 × 109 | — | [119] |
WS2/graphene | 390~1080 | 0.439 | 1.41 × 1010 | 2.1 s | [120] |
SnS2/graphene | 380~780 | 6.98 ma/W | — | 4.53 s | [121] |
IV Graphene-halide perovskites | |||||
Graphene/MAPbBr3 | 532 | 1017.1 | 2.02 × 1013 | — | [133] |
CsPbX3 NCs/graphene | 405 | 3.4 | 7.5 × 108 | 7.9/125 ms | [137] |
FAPbI3perovskite/graphene | 515 | 115 | 3 × 1012 | 0.25/5.3 s | [131] |
Perovskite/GNs/graphene | 532 | 5.9 × 104 | 1.31 × 1013 | — | [134] |
V Mixed structures | |||||
Graphene/ZnO NWs | 365 | 3.2 × 104 | — | — | [147] |
Graphene/MoS2 | 400–1000 | 10 | — | 0.28/1.5 s | [148] |
Graphene/WSe2 | 532 | 350 | 1 × 1013 | 50/30 µs | [149] |
Graphene/TiO2/p-Si | 750 | 3.6 | 4 × 1013 | — | [150] |
Graphene/PdSe2 | 650–1550 | 6.68 × 104 | — | 660 µs | [151] |
Graphene/PSB QDS | 808 | 4.2 × 102 | 2.1 × 109 | 10.6 ms | [152] |
Graphene/TiO2 | 532 | 179 | 9.12 × 109 | 20 ms | [153] |
Graphene/WSe2nanosheets | 670 | 6.66 | 1.94 × 108 | 0.8/1.4 s | [154] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Xiao, Y.; Li, Y.; Han, L.; Sun, Z.; He, L.; Liu, R.; Hu, K. Recent Progress on Graphene Flexible Photodetectors. Materials 2022, 15, 4820. https://doi.org/10.3390/ma15144820
Wang M, Xiao Y, Li Y, Han L, Sun Z, He L, Liu R, Hu K. Recent Progress on Graphene Flexible Photodetectors. Materials. 2022; 15(14):4820. https://doi.org/10.3390/ma15144820
Chicago/Turabian StyleWang, Mengzhu, Yingying Xiao, Ye Li, Lu Han, Zhicheng Sun, Liang He, Ruping Liu, and Kuan Hu. 2022. "Recent Progress on Graphene Flexible Photodetectors" Materials 15, no. 14: 4820. https://doi.org/10.3390/ma15144820
APA StyleWang, M., Xiao, Y., Li, Y., Han, L., Sun, Z., He, L., Liu, R., & Hu, K. (2022). Recent Progress on Graphene Flexible Photodetectors. Materials, 15(14), 4820. https://doi.org/10.3390/ma15144820