High Dielectric Constant and Dielectric Relaxations in La2/3Cu3Ti4O12 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Homes, C.C.; Vogt, T.; Shapiro, S.M.; Wakimoto, S.; Ramirez, A.P. Optical response of high-dielectric-constant perovskite-related oxide. Science 2001, 293, 673–676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Subramanian, M.A.; Sleight, A.W. ACu3Ti4O12 and ACu3Ru4O12 perovskites: High dielectric constants and valence degeneracy. Solid State Sci. 2002, 4, 347–351. [Google Scholar] [CrossRef]
- Zhang, L.; Tang, Z.J. Polaron relaxation and variable-range-hopping conductivity in the giant-dielectric-constant material CaCu3Ti4O12. Phys. Rev. B 2004, 70, 174306. [Google Scholar] [CrossRef]
- Li, W.; Schwartz, R.W. Maxwell-Wagner relaxations and their contribution to the high permittivity of calcium copper titanate ceramics. Phys. Rev. B 2007, 75, 012104. [Google Scholar] [CrossRef]
- Ni, L.; Chen, X.M. Dielectric relaxaitons and formation mechanism of giant dielectric constant step in CaCu3Ti4O12 ceramics. Appl. Phys. Lett. 2007, 91, 122905. [Google Scholar] [CrossRef]
- Fang, T.T.; Shiau, H.K. Mechanism for developing the boundary layers of CaCu3Ti4O12. J. Am. Ceram. Soc. 2010, 87, 2072–2079. [Google Scholar] [CrossRef]
- Schmidt, R.; Stennett, M.C.; Hyatt, N.C.; Pokomy, J.; Gonjua, J.P.; Li, M.; Sinclair, D.C. Effects of sintering temperature on the internal barrier layer capacitor (IBLC) structure in CaCu3Ti4O12 (CCTO) ceramics. J. Eur. Ceram Soc. 2012, 32, 3313–3323. [Google Scholar] [CrossRef]
- Jumpatam, J.; Putasaeng, B.; Yamwron, T.; Thongbai, P.; Maensiri, S. Enhancement of giant dielectric response in Ga-doped CaCu3Ti4O12 ceramics. Ceram. Int. 2013, 39, 1057–1064. [Google Scholar] [CrossRef]
- Mu, C.H.; Song, Y.Q.; Wang, H.B.; Wang, X.N. Room temperature magnetic and dielectric properties of cobalt doped CaCu3Ti4O12 ceramics. J. Appl. Phys. 2015, 117, 17B723. [Google Scholar] [CrossRef]
- Peng, Z.H.; Li, J.W.; Liang, P.F.; Yang, Z.P.; Chao, X.L. Improved dielectric properties and grain boundary response of SrTiO3 doped Y2/3Cu3Ti4O12 ceramics fabricated by Sol-gel process for high-energy-density storage applications. J. Eur. Ceram. Soc. 2017, 37, 4637–4644. [Google Scholar] [CrossRef]
- Boonlakhorn, J.; Kidkhunthod, P.; Chanlek, M.; Thongbai, P. (Al3+, Nb5+) co-doped CaCu3Ti4O12: An extended approach for acceptor-donor heteroatomic substitutions to achieve high-performance giant-dielectric permittivity. J. Eur. Ceram. Soc. 2018, 38, 137–143. [Google Scholar] [CrossRef]
- Bernadette, D.; Guillaume, R.; Sylvain, M.; Christelle, H. High-resolution FIB-TEM-STEM structural characterization of grain boundaries in the high dielectric constant perovskite CaCu3Ti4O12. J. Eur. Ceram. Soc. 2020, 40, 3577–3584. [Google Scholar]
- Boonlakhorn, J.; Chanlekc, N.; Manyamd, J.; Srepusharawoot, P.; Thongbai, P. Simultaneous two-step enhanced permittivity and reduced loss tangent in Mg/Ge-Doped CaCu3Ti4O12 ceramics. J. Alloys Compd. 2021, 877, 160322. [Google Scholar] [CrossRef]
- Guo, Y.; Tan, J.L.; Zhao, J.C. Microstructure and electrical properties of nano-scale SnO2 hydrothermally coated CCTO-based composite ceramics. Ceram. Int. 2022, 48, 17795–17801. [Google Scholar] [CrossRef]
- Peng, Z.H.; Liang, P.F.; Wang, X.; Peng, H.; Chen, X.F.; Yang, Z.P.; Chao, X.L. Fabrication and Characterization of CdCu3Ti4O12 ceramics with colossal permittivity and low dielectric loss. Mater. Lett. 2018, 210, 301–304. [Google Scholar] [CrossRef]
- Peng, Z.; Wang, J.; Zhang, F.; Xu, S.; Lei, X.; Liang, P.; Wei, L.; Wu, D.; Chao, X.; Yang, Z. High energy storage and colossal permittivity CdCu3Ti4O12 oxide ceramics. Ceram. Int. 2022, 48, 4255–4260. [Google Scholar] [CrossRef]
- Liang, P.F.; Yang, Z.P.; Chao, X.L.; Liu, Z.H. Giant dielectric constant and good temperature stability in Y2/3Cu3Ti4O12 ceramics. J. Am. Ceram. Soc. 2012, 95, 2218–2225. [Google Scholar] [CrossRef]
- Peng, Z.H.; Wang, X.; Xu, S.D.; Zhang, F.D.; Wang, J.T.; Wang, J.J.; Wu, D.; Liang, P.F.; Wei, L.L.; Chao, X.L.; et al. Improved grain boundary resistance inducing decreased dielectric loss and colossal permittivity in Y2/3Cu3Ti4O12 ceramics. Mater. Chem. Phys. 2022, 283, 125874. [Google Scholar] [CrossRef]
- Hao, W.T.; Zhang, J.L.; Tan, Y.Q.; Su, W.B. Giant Dielectric-Permittivity Phenomena of Compositionally and Structurally CaCu3Ti4O12-Like Oxide Ceramics. J. Am. Ceram. Soc. 2009, 92, 2937–2943. [Google Scholar] [CrossRef]
- Ren, H.M.; Liang, P.F.; Yang, Z.P. Processing, dielectric properties and impedance characteristic of Na0.5Bi0.5Cu3Ti4O12 ceramics. Mater. Res. Bull. 2010, 45, 1608–1613. [Google Scholar] [CrossRef]
- Kumonsa, P.; Thongbai, P.; Putasaeng, B.; Yamwong, T.; Maensiri, S. Na1/3Ca1/3Bi1/3Cu3Ti4O12: A new giant dielectric perovskite ceramics in ACu3Ti4O12 compounds. J. Eur. Ceram. Soc. 2015, 35, 1441–1447. [Google Scholar]
- Ni, L.; Fu, M.S.; Zhang, Y. Dielectric relaxation and relevant mechanism in giant dielectric constant Sm2/3Cu3Ti4O12 ceramics. J. Mater. Sci. Mater. Electron. 2018, 29, 17737–17742. [Google Scholar] [CrossRef]
- Liu, Z.Q.; Chao, X.L.; Liang, P.F.; Yang, Z.P.; Zhi, L. Differentiated Electric Behaviors of La2/3Cu3Ti4O12 Ceramics Prepared by Different Methods. J. Am. Ceram. Soc. 2014, 97, 2154–2163. [Google Scholar] [CrossRef]
- Prakash, B.S.; Varma, K.B.R. Effect of sintering condition on the dielectric properties of CaCu3Ti4O12 and La2/3Cu3Ti4O12 ceramics: A comparative study. Phys. B 2006, 382, 312–319. [Google Scholar] [CrossRef]
- Wei, Y.X.; Zhang, B.; Fu, Z.L.; Chen, H.M.; Chang, A.M. New negative temperature coefficient ceramics in ACu3Ti4O12 (A = Sr, La2/3, Ca, Y2/3) system. J. Mater. Sci. Mater. Electron. 2021, 32, 4755–4765. [Google Scholar] [CrossRef]
- Ahmad, M.M.; Kotb, H.M.; Joseph, C.; Kumar, S.; Alshoaibi, A. Transport and dielectric properties of mechanosynthesized La2/3Cu3Ti4O12 ceramics. Crystals 2021, 11, 313. [Google Scholar] [CrossRef]
- Fu, Z.L.; Nie, H.C.; Wei, Y.X.; Zhang, B.; Chang, A.M. Effect of Mn-doping on microstructure and electrical properties of La2/3Cu3Ti4O12 ceramics. J. Alloys Compd. 2020, 847, 156525. [Google Scholar] [CrossRef]
- Liu, Z.Q. Dielectric properties and impedance versus dc bias and I-V characteristics of La2/3Cu3Ti4O12 ceramics. Ferroelectrics 2020, 555, 199–210. [Google Scholar] [CrossRef]
Atom | Wyckoff Prosition | x | y | z | Biso(Å2) | Occupies |
---|---|---|---|---|---|---|
La | 2a | 0.000 | 0.000 | 0.000 | 0.021(39) | 0.028(0) |
Cu | 6b | 0.000 | 0.500 | 0.500 | 0.373(29) | 0.125(0) |
Ti | 8c | 0.250 | 0.250 | 0.250 | 0.499(26) | 0.167(0) |
O | 24g | 0.30336 | 0.18024 | 0.000 | 0.030(0) | 0.500(0) |
Compound | 1 kHz | 100 kHz | ||
---|---|---|---|---|
ε′ | tanδ | ε′ | tanδ | |
La2/3Cu3Ti4O12 | 27,753 | 0.63 | 9,396.5 | 0.31 |
CaCu3Ti4O12 | 13,761 | 0.90 | 6,904.2 | 0.14 |
Compound | Bingding Energy (eV) | Area Ratio | ||||
---|---|---|---|---|---|---|
Cu+ | Cu2+ | Ti3+ | Ti4+ | Cu+/Cu2+ | Ti3+/Ti4+ | |
CaCu3Ti4O12 | 931.826 | 932.232 | 457.657 | 458.261 | 0.799 | 0.686 |
La2/3Cu3Ti4O12 | 931.864 | 932.108 | 457.691 | 458.233 | 0.822 | 1.007 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, L.; Zhang, C.; Fang, L. High Dielectric Constant and Dielectric Relaxations in La2/3Cu3Ti4O12 Ceramics. Materials 2022, 15, 4526. https://doi.org/10.3390/ma15134526
Ni L, Zhang C, Fang L. High Dielectric Constant and Dielectric Relaxations in La2/3Cu3Ti4O12 Ceramics. Materials. 2022; 15(13):4526. https://doi.org/10.3390/ma15134526
Chicago/Turabian StyleNi, Lei, Chuyi Zhang, and Lu Fang. 2022. "High Dielectric Constant and Dielectric Relaxations in La2/3Cu3Ti4O12 Ceramics" Materials 15, no. 13: 4526. https://doi.org/10.3390/ma15134526