Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Test on Fresh Mortar
Slump Test
3.2. Test on Hardened Mortar
3.2.1. Flexural Test on Mortar
3.2.2. Compressive Strength Test
3.2.3. Water Absorption Test
3.2.4. Bulk Density Test
3.2.5. Microstructural Analysis
4. Comparison of Results with Previous Studies
5. Conclusions
- Workability of the fibre-reinforced mortars was lower than that of the control mixtures, which was attributed to the varying water absorption capacities of the added fibres, thus making the matrix less cohesive at the wet state.
- Overall, the mechanical test results showed that excessive fibre content or the fibre orientation in the matrix contributed largely to the strength properties of the mixture. In this study, the best strength performance for the mortars was achieved at a fibre content of 1%. The study also deduced that the overlapping of fibres (in case of higher fiber volume) could create failure pathways in the material under test load.
- The compressive strength and flexural strength of mortars produced in this study were best at a fibre content of 1.0%.
- This study recommends RMM-1.5 to be implemented as a viable mortar mix design as it is also a more optimal option in terms of strength and durability.Additionally, further research is crucial to decipher possible enhancements to the reduced compressive strength of natural-fibre-reinforced concrete.
- To further improve the performance of mortars using fibres, research in the durability assessment of mortars incorporating natural fibres is encouraged.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Parashar, A.K.; Gupta, A. Investigation of the Effect of Bagasse Ash, Hooked Steel Fibers and Glass Fibers on the Mechanical Properties of Concrete. Mater. Today Proc. 2021, 44, 801–807. [Google Scholar] [CrossRef]
- Todor, M.P.; Bulei, C.; Kiss, I.; Alexa, V. Recycling of Textile Wastes into Textile Composites Based on Natural Fibres: The Valorisation Potential. IOP Conf. Ser. Mater. Sci. Eng. 2019, 477, 012004. [Google Scholar] [CrossRef]
- Clarence, O. Assessment of Quantity of Coconut Waste Generated and Management in the Kumasi Metropolis, Ghana; Kwame Nkrumah University of Science and Technology College of Engineering: Kumasi, Ghana, 2016. [Google Scholar]
- Tomar, R.; Kishore, K.; Singh Parihar, H.; Gupta, N. A Comprehensive Study of Waste Coconut Shell Aggregate as Raw Material in Concrete. Mater. Today Proc. 2021, 44, 437–443. [Google Scholar] [CrossRef]
- Kosseva, M.R. Waste From Fruit Wine Production; Elsevier Inc.: Amsterdam, The Netherlands, 2017; ISBN 9780128010341. [Google Scholar]
- Yliniemi, J.; Ramaswamy, R.; Luukkonen, T.; Laitinen, O.; de Sousa, Á.N.; Huuhtanen, M.; Illikainen, M. Characterization of Mineral Wool Waste Chemical Composition, Organic Resin Content and Fiber Dimensions: Aspects for Valorization. Waste Manag. 2021, 131, 323–330. [Google Scholar] [CrossRef]
- Mehrzad, S.; Taban, E.; Soltani, P.; Samaei, S.E.; Khavanin, A. Sugarcane Bagasse Waste Fibers as Novel Thermal Insulation and Sound-Absorbing Materials for Application in Sustainable Buildings. Build. Environ. 2022, 211, 108753. [Google Scholar] [CrossRef]
- Madhwani, H.; Sathyan, D.; Mini, K.M. Study on Durability and Hardened State Properties of Sugarcane Bagasse Fiber Reinforced Foam Concrete. Mater. Today Proc. 2019, 46, 4782–4787. [Google Scholar] [CrossRef]
- Fajrin, J.; Akmaluddin, A.; Gapsari, F. Utilization of Kenaf Fiber Waste as Reinforced Polymer Composites. Results Eng. 2022, 13, 100380. [Google Scholar] [CrossRef]
- Papatzani, S.; Paine, K. Overview of Construction and Demolition Waste Legislation in EU and Greece & State of the Art on Recycling CDEW in Concrete. In Proceedings of the Fifth International Conference on Environmental Management, Engineering, Planning & Economics (CEMEPE 2015), Mykonos island, Greece, 14–18 June 2015. [Google Scholar]
- Chandramouli, K.; Rao, S.S.; Pannirselvam, N.; Sekhar, S.T.; Sravana, P. Strength Properties of Glass Fibre Concrete. J. Eng. Appl. Sci. 2010, 5, 1–6. [Google Scholar]
- Plizzari, G.; Mindess, S. Fiber-Reinforced Concrete; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 9780081026168. [Google Scholar]
- Das, P.P.; Chaudhary, V. Moving towards the Era of Bio Fibre Based Polymer Composites. Clean. Eng. Technol. 2021, 4, 100182. [Google Scholar] [CrossRef]
- Nwankwo, C.O.; Ede, A.N.; Olofinnade, O.M.; Osofero, A.I. NFRP Strengthening of Reinforced Concrete Beams. IOP Conf. Ser. Mater. Sci. Eng. 2019, 640, 012074. [Google Scholar] [CrossRef]
- Gualtieri, A.F. Bridging the Gap between Toxicity and Carcinogenicity of Mineral Fibres by Connecting the Fibre Crystal-Chemical and Physical Parameters to the Key Characteristics of Cancer. Curr. Res. Toxicol. 2021, 2, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Shahinur, S.; Hasan, M. Natural Fiber and Synthetic Fiber Composites: Comparison of Properties, Performance, Cost and Environmental Benefits; Elsevier Ltd.: Amsterdam, The Netherlands, 2020; Volume 2, ISBN 9780128035818. [Google Scholar]
- Kumar, S.; Prasad, L.; Patel, V.K.; Kumar, V.; Kumar, A.; Yadav, A.; Winczek, J. Physical and Mechanical Properties of Natural Leaf Fiber-Reinforced Epoxy Polyester Composites. Polymers 2021, 13, 1369. [Google Scholar] [CrossRef] [PubMed]
- Alabduljabbar, H.; Mohammadhosseini, H.; Tahir, M.M.; Alyousef, R. Green and Sustainable Concrete Production Using Carpet Fibers Waste and Palm Oil Fuel Ash. Mater. Today Proc. 2019, 39, 929–934. [Google Scholar] [CrossRef]
- Su, Y.; Li, J.; Wu, C.; Wu, P.; Li, Z.X. Effects of Steel Fibres on Dynamic Strength of UHPC. Constr. Build. Mater. 2016, 114, 708–718. [Google Scholar] [CrossRef]
- Pöhler, C.; Bachtiar, E.V.; Yan, L.; Kasal, B. Composites for Structural Strengthening, Repair, Rehabilitation, and Retrofit. Compos. Mater. 2021, 205–226. [Google Scholar] [CrossRef]
- Ferrara, G.; Pepe, M.; Filho, R.D.T.; Martinelli, E. Mechanical Response and Analysis of Cracking Process in Hybrid TRM Composites with Flax Textile and Curauá Fibres. Polymers 2021, 13, 715. [Google Scholar] [CrossRef]
- Piña Ramírez, C.; del Río Merino, M.; Viñas Arrebola, C.; Vidales Barriguete, A.; Kosior-Kazberuk, M. Analysis of the Mechanical Behaviour of the Cement Mortars with Additives of Mineral Wool Fibres from Recycling of CDW. Constr. Build. Mater. 2019, 210, 56–62. [Google Scholar] [CrossRef]
- Long, W.; Wang, Y. Effect of Pine Needle Fibre Reinforcement on the Mechanical Properties of Concrete. Constr. Build. Mater. 2021, 278, 122333. [Google Scholar] [CrossRef]
- BS EN 1015-1; British Standard Methods of Test for Mortar for Masonry—Part 1: Determination of Particle Size Distribution (by Sieve Analysis). British Standard Institute: London, UK, 2004.
- Awoyera, P.O.; Effiong, J.U.; Olalusi, O.B.; Prakash Arunachalam, K.; de Azevedo, A.R.G.; Martinelli, F.R.B.; Monteiro, S.N. Experimental Findings and Validation on Torsional Behaviour of Fibre-Reinforced Concrete Beams: A Review. Polymers 2022, 14, 1171. [Google Scholar] [CrossRef]
- BS EN 1015-6; British Standard Methods of Test for Mortar for Masonry—Part 6: Determination of Bulk Density of Fresh Mortar. British Standard Institute: London, UK, 2004.
- BS EN 1015-11; Methods of Test for Mortar for Masonry—Part 11: Determination of Flexural and Compressive Strength of Hardened Mortar. British Standard Institute: London, UK, 2000; pp. 2017–2028.
- BS EN 1015-18; British Standard Methods of Test for Mortar for Masonry—Part 18: Determination of Water Absorption Coefficient Due to Capillary Action of Hardened Mortar. British Standard Institute: London, UK, 2004.
- BS 812-2; British Standard Testing Aggregates Part 2: Method of Determination of Density. BSI Standard Publication: London, UK, 1995.
- EN 12350-2:2009; Testing Fresh Concrete—Part 2: Slump Test. BSI Standard Publication: London, UK, 2009; pp. 5–8.
- Awoyera, P.O.; Olalusi, O.B.; Babagbale, D.P.; Babalola, O.E. A Review of Lightweight Composite Development Using Paper Waste and Pulverized Ceramics—Towards a Sustainable and Eco-Friendly Construction. Int. J. Eng. Res. Afr. 2021, 56, 77–94. [Google Scholar] [CrossRef]
- Mathavan, M.; Sakthieswaran, N.; Babu, O.G. Experimental Investigation on Strength and Properties of Natural Fibre Reinforced Cement Mortar. Mater. Today Proc. 2020, 37, 1066–1070. [Google Scholar] [CrossRef]
- Chandrasekaran, R.G.; Ramakrishna, G. Experimental Investigation on Mechanical Properties of Economical Local Natural Fibre Reinforced Cement Mortar. Mater. Today Proc. 2021, 46, 7633–7638. [Google Scholar] [CrossRef]
- Rama Rao, P.; Ramakrishna, G. Experimental Investigation on Mechanical Properties of Oil Palm Empty Fruit Bunch Fiber Reinforced Cement Mortar. Mater. Today Proc. 2021, 46, 471–477. [Google Scholar] [CrossRef]
- Ibrahim, N.M.; Rahim, N.L.; Amat, R.C.; Rahim, M.A.; Woo, C.K.; Zakarya, I.A.; Moncea, A. Workability and Density of Concrete Containing Coconut Fiber BT—Proceedings of the 3rd International Conference on Green Environmental Engineering and Technology; Mohamed Noor, N., Sam, S.T., Abdul Kadir, A., Eds.; Springer Nature: Singapore, 2022; pp. 347–352. [Google Scholar]
Fibre | Avg. Length (mm) | Density (kg/m3) | Tensile Strength (N/mm2) |
---|---|---|---|
Mineral wool | 75 | 125 | 1932 |
Coconut | 50 | 1150 | 145 |
Designation | Fibre Name | Adopted Mix Ratio of Cement and Fine Aggregates | Natural Fibre Content (%) |
---|---|---|---|
CM | 1:3 | - | |
RMM-1.0 | Mineral wool | 1.0 | |
RMM-1.5 | Mineral Wool | 1.5 | |
RCM-1.0 | Coconut fibre | 1.0 | |
RCM-1.5 | Coconut fibre | 1.5 |
Specimens | Content | Slump Value (mm) | Changes in Slump (%) |
---|---|---|---|
CM | Conventional mortar | 50.0 | - |
RMM-1.0 | 1.0% mineral wool fibres | 40.0 | −20 |
RCM-1.0 | 1.0% coconut fibres | 40.0 | −20 |
RMM-1.5 | 1.5% mineral wool fibres | 30.0 | −40 |
RCM-1.5 | 1.5% coconut fibres | 35.0 | −30 |
Specimens | Water Absorption at 7 Days (%) | Water Absorption at 14 Days (%) | Water Absorption at 28 Days (%) |
---|---|---|---|
CC | 0.104 | 0.093 | 0.178 |
RMM-1.0 | 0.033 | 0.082 | 0.160 |
RCM-1.0 | 0.076 | 0.151 | 0.100 |
RMM-1.5 | 0.173 | 0.109 | 0.031 |
RCM-1.5 | 0.122 | 0.060 | 0.064 |
References | Specimens | Fibre Type | Fibre Volume Fraction (%) | Cu at 7 Days | Cu at 28 Days | % Improvement |
---|---|---|---|---|---|---|
Present study | RMM-1.0 | Mineral wood fibre | 1.0 | 5.81 | 9.82 | −12.01 |
Mathavan et al., 2020 | M3 | Cotton | 1.5 | 6.52 | 9.72 | 13.02 |
Chandrasekaran et al., 2021 | C7 | Coir-10 mm L | 1.5 | 28.00 | 42.00 | −27.59 |
Rao & Ramakrishna, 2021 | SP5 | Oil Palm (Spikelet)-15 mm L | 2.0 | 33.24 | 54.47 | −2.73 |
Ramirez et al., 2019 | RW 1 | Rock wool waste | 30.0 | 27.00 | −8.78 |
References | Specimens | Fibre Type | Fibre Volume Fraction (%) | FT at 7 Days (MPa) | FT at 28 Days (MPa) | % Improvement |
---|---|---|---|---|---|---|
Present study | RMM-1.5 | Mineral wood fibre | 1.5 | 0.53 | 0.88 | 47.10 |
Mathavan et al. 2020 | M9 | Polyester | 1.5 | - | 6.84 | 39.58 |
Chandrasekaran et al. 2021 | P9 | Palmyra-20 mm L | 1.5 | 2.60 | 4.20 | 45.95 |
Rao & Ramakrishna, 2021 | SP6 | Oil Palm (Spikelet)-20 mm L | 2.0 | 4.32 | 6.59 | 60.98 |
Ramirez et al. 2019 | RW 1 | Rock wool waste | 30.0 | 7.60 | 15.85 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Awoyera, P.O.; Odutuga, O.L.; Effiong, J.U.; De Jesus Silvera Sarmiento, A.; Mortazavi, S.J.; Hu, J.W. Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre. Materials 2022, 15, 4520. https://doi.org/10.3390/ma15134520
Awoyera PO, Odutuga OL, Effiong JU, De Jesus Silvera Sarmiento A, Mortazavi SJ, Hu JW. Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre. Materials. 2022; 15(13):4520. https://doi.org/10.3390/ma15134520
Chicago/Turabian StyleAwoyera, Paul O., Oluwaseun L. Odutuga, John Uduak Effiong, Astelio De Jesus Silvera Sarmiento, Seyed Javad Mortazavi, and Jong Wan Hu. 2022. "Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre" Materials 15, no. 13: 4520. https://doi.org/10.3390/ma15134520
APA StyleAwoyera, P. O., Odutuga, O. L., Effiong, J. U., De Jesus Silvera Sarmiento, A., Mortazavi, S. J., & Hu, J. W. (2022). Development of Fibre-Reinforced Cementitious Mortar with Mineral Wool and Coconut Fibre. Materials, 15(13), 4520. https://doi.org/10.3390/ma15134520