Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum
Abstract
:1. Introduction
2. Materials and Methods
2.1. Washing Phosphogypsum
2.2. Chemical Composition of the Reaction Products
2.3. Determination of Divalent Calcium Sulfate
2.4. Determination of Semi-Aqueous Calcium Sulfate
2.5. Reactivity Studies of Washed Phosphogypsum
2.6. Determination of Calcium Carbonate Content by Reverse Titration
3. Results and Discussion
3.1. Determination of the Chemical Composition of Phosphogypsum from Production Sites in Russia
3.2. Thermodynamic Calculations of Reactions
3.3. Determination of Acid Content
3.4. Determination of the Chemical Composition after a Series of Washes
3.5. Determining the Grade of Gypsum
3.6. Results of the Influence of the Acid Residue on the Yield of CaCO3
3.7. Microstructure Analysis
3.8. Determination of the Chemical Composition of Reaction Products
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alekseev, A.I. Complex processing of apatite-nepheline ores based on the creation of closed technological schemes. J. Min. Inst. 2017, 215, 75–83. [Google Scholar]
- Molkov, A.A.; Dergunov, Y.I.; Suchkov, V.P. A method of processing phosphogypsum/Izv. Chelyabinsk Sci. Cent. 2006, 4, 59–63. [Google Scholar]
- Ferronskaya, A.V. Gypsum materials and products (production and application). In Reference Book; Ferronskaya, A.V., Ed.; DIA Publishing House: New York, NY, USA, 2002; p. 488. [Google Scholar]
- Mechai, A.A. High-firing composite gypsum binder based on phosphogypsum. In Cement and Its Application; Mechai, A.A., Novik, M.V., Melnikova, Y.I., Eds.; Petrocem: Saint-Petersburg, Russia, 2007; pp. 73–75. [Google Scholar]
- Kochetkov, A.V.; Shchegoleva, N.V.; Korotkovsky, S.A. Arrangement of layers of transport structures from phosphogypsum hemihydrate (a waste by-product of the production of nitrogen-phosphorus fertilizers). Transp. Facil. 2019, 6, 1–10. [Google Scholar]
- Soldatkin, S.I.; Khokhlov, A.E. Problems of the use of phosphogypsum in road construction. Nedra Volga Casp. Reg. 2019, 97, 58–61. [Google Scholar]
- Smirnova, O.; Kazanskaya, L.; Koplík, J.; Tan, H.; Gu, X. Concrete Based on Clinker-Free Cement: Selecting the Functional Unit for Environmental Assessment. Sustainability 2020, 13, 135. [Google Scholar] [CrossRef]
- Tian, T.; Yan, Y.; Hu, Z.; Xu, Y.; Chen, Y.; Shi, J. Utilization of original phosphogypsum for the preparation of foam concrete. Constr. Build. Mater. 2016, 115, 143–152. [Google Scholar] [CrossRef]
- Ding, W.; Chen, Q.; Sun, H.; Peng, T. Modified mineral carbonation of phosphogypsum for CO2 sequestration. J. CO2 Util. 2019, 34, 507–515. [Google Scholar] [CrossRef]
- Zhang, W.; Zhang, F.; Ma, L.; Ning, P.; Yang, J.; Wei, Y. An efficient methodology to use hydrolysate of phosphogypsum decomposition products for CO2 mineral sequestration and calcium carbonate production. J. Clean. Prod. 2020, 259, 120826. [Google Scholar] [CrossRef]
- Ma, J.; Ma, L.P.; Zhang, D.H.; Yan, B.; Zhou, L.; Zi, Z.C. Producing high quality CaCO3 by phosphogypsum with new ammonia-base carbonation method. In Applied Mechanics and Materials; Trans Tech Publications Ltd.: Bach, Switzerland, 2014; Volume 628, pp. 115–119. [Google Scholar]
- Chen, Q.; Ding, W.; Sun, H.; Peng, T.; Ma, G. Utilization of Phosphogypsum to Prepare High-Purity CaCO3 in the NH4Cl–NH4OH–CO2 System. ACS Sustain. Chem. Eng. 2020, 8, 11649–11657. [Google Scholar] [CrossRef]
- Liu, E.; Ghandehari, M.; Brückner, C.; Khalil, G.; Worlinsky, J.; Jin, W.; Hyland, M.A. Mapping high pH levels in hydrated calcium silicates. Cem. Concr. Res. 2017, 95, 232–239. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; He, H.; Wang, Y.; Xue, W. Effects of Fluorogypsum and Flue-Gas Desulfurization Gypsum on the Hydration and Hardened Properties of Alkali Slag Cement. Crystals 2021, 11, 1475. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, J.; Wang, J.; Guan, X. Effects of Aluminum Sulfate and Quicklime/Fluorgypsum Ratio on the Properties of Calcium Sulfoaluminate (CSA) Cement-Based Double Liquid Grouting Materials. Materials 2019, 12, 1222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Y.; He, F.; Wang, J.; Wang, S.; Xiong, Z. Effects of calcium bicarbonate on the properties of ordinary Portland cement paste. Constr. Build. Mater. 2019, 225, 591–600. [Google Scholar] [CrossRef]
- Wang, J.; Liu, E.; Li, L. Characterization on the recycling of waste seashells with Portland cement towards sustainable cementitious materials. J. Clean. Prod. 2019, 220, 235–252. [Google Scholar] [CrossRef]
- Kostanov, I.M.; Sibiryakova, I.B.; Pochitalkina, I.A. Development of technological solutions aimed at protecting the environment by reducing emissions of by-products of the production of EFC and their subsequent processing. Adv. Chem. Chem. Technol. 2020, 24, 59–60. [Google Scholar]
- Lutskiy, D.; Litvinova, T.; Ignatovich, A.; Fialkovskiy, I. Complex processing of phosphogypsum-A way of recycling dumps with reception of commodity production of wide application. J. Ecol. Eng. 2018, 19, 221–225. [Google Scholar] [CrossRef]
- Kashurin, R.R.; Gerasev, S.A.; Litvinova, T.E.; Zhadovskiy, I.T. Prospective recovery of rare earth elements from waste. J. Phys. Conf. Ser. 2020, 1679, 052070. [Google Scholar] [CrossRef]
- Kocherov, V.I. Instrumental Methods of Analysis: Laboratory Practice: Teaching Aid. Ph.D. Thesis, University of Ghana, Accra, Ghana, 2015; pp. 11–16. [Google Scholar]
- Mishchenko, K.P.; Ravdel, A.A. Brief reference book of physical and chemical quantities. Chemistry 1974, 200. [Google Scholar]
- Lütke, S.F.; Oliveira, M.L.; Waechter, S.R.; Silva, L.F.; Cadaval, T.R., Jr.; Duarte, F.A.; Dotto, G.L. Leaching of rare earth elements from phosphogypsum. Chemosphere 2022, 301, 134661. [Google Scholar] [CrossRef]
- Lobacheva, O.L.; Berlinskii, I.V.; Dzhevaga, N.V. Thermodynamics of complexation in an aqueous solution of Tb (III) nitrate at 298 K. Russ. J. Phys. Chem. 2017, 91, 67–69. [Google Scholar] [CrossRef]
- Cheremisina, O.V.; Ponomareva, M.A.; Sagdiev, V.N. Thermodynamic characteristics of sorption extraction and chromatographic separation of anionic complexes of erbium and cerium with Trilon B on weakly basic anionite. Russ. J. Phys. Chem. 2016, 90, 664–670. [Google Scholar] [CrossRef]
- Idboufrade, A.; Bouargane, B.; Ennasraoui, B.; Biyoune, M.G.; Bachar, A.; Bakiz, B.; Mançour-Billah, S. Phosphogypsum Two-Step Ammonia-Carbonation Resulting in Ammonium Sulfate and Calcium Carbonate Synthesis: Effect of the Molar Ratio OH−/Ca2+ on the Conversion Process. Waste Biomass Valoriz. 2021, 13, 1795–1806. [Google Scholar] [CrossRef]
- Sergeev, I.B.; Ponomarenko, T.V. Incentives for creating a competitive rare earth industry in Russia in the context of global competition. Zap. Gorn. Inst. 2015, 211, 104. [Google Scholar]
- Tian, D.; Xia, J.; Zhou, N.; Xu, M.; Li, X.; Zhang, L.; Du, S.; Gao, H. The Utilization of Phosphogypsum as a Sustainable Phosphate-Based Fertilizer by Aspergillus niger. Agronomy 2022, 12, 646. [Google Scholar] [CrossRef]
- Ennaciri, Y.; Bettach, M. Procedure to convert phosphogypsum waste into valuable products. Mater. Manuf. Processes 2018, 33, 1727–1733. [Google Scholar] [CrossRef]
- Kang, C.-U.; Ji, S.-W.; Jo, H. Recycling of Industrial Waste Gypsum Using Mineral Carbonation. Sustainability 2022, 14, 4436. [Google Scholar] [CrossRef]
- Ramteke, L.P.; Sarode, D.D.; Marathe, Y.S.; Ghosh, P.K. Removal of Fluoride Contaminant in Phosphate Fertilizers through Solid State Thermal Treatment. J. Fluor. Chem. 2020, 241, 109693. [Google Scholar] [CrossRef]
- Volodchenko, A.A.; Lesovik, V.S.; Cherepanova, I.A.; Volodchenko, A.N.; Zagorodnjuk, L.H.; Elistratkin, M.Y. Peculiarities of non-autoclaved lime wall materials production using clays. IOP Conf. Ser. Mater. Sci. Eng. 2018, 327, 022021. [Google Scholar] [CrossRef]
- Jabir, H.A.; Abid, S.R.; Murali, G.; Ali, S.H.; Klyuev, S.; Fediuk, R.; Vatin, N.; Promakhov, V.; Vasilev, Y. Experimental Tests and Reliability Analysis of the Cracking Impact Resistance of UHPFRC. Fibers 2020, 8, 74. [Google Scholar] [CrossRef]
- Gawande, S.M.; Sarode, D.D. Reuse of Wastewater to Conserve the Natural Water Resources. In International Conference on Sustainable Waste Management through Design; Springer: Cham, Switzerland, 2019; pp. 353–367. [Google Scholar]
- Fediuk, R.; Smoliakov, A.; Muraviov, A. Mechanical properties of fiber-reinforced concrete using composite binders. Adv. Mater. Sci. Eng. 2017, 2017, 2316347. [Google Scholar] [CrossRef] [Green Version]
- Fediuk, R.; Yushin, A. Composite binders for concrete with reduced permeability. IOP Conf. Ser. Mater. Sci. Eng. 2016, 116, 012021. [Google Scholar] [CrossRef]
No. | Phosphogypsum Storage Production Sites | Oxide Content, wt.% | |||||||
---|---|---|---|---|---|---|---|---|---|
CaO | SO3 | SiO2 | SrO | BaO | Fe2O3 | K2O | REM | ||
1 | Kingisepp | 35.59 | 61.33 | 1.37 | 1.30 | 0.11 | 0.08 | 0.05 | 0.16 |
2 | Balakovo | 33.36 | 60.21 | 3.60 | 1.91 | 0.11 | 0.09 | 0.14 | 0.57 |
3 | Cherepovets | 34.35 | 60.81 | 2.01 | 2.17 | 0.16 | 0.11 | 0.09 | 0.27 |
4 | Volkhov | 36.41 | 58.72 | 1.62 | 2.43 | - | 0.01 | 0.11 | 0.69 |
No. Reaction | T, °C | ∆G, kJ/mol | ∆H, kJ/mol |
---|---|---|---|
No.1 (+Na2CO3) | 25 | −25.9 | −37.0 |
50 | −26.0 | ||
100 | −26.2 | ||
500 | −27.8 | ||
No.2 (+K2CO3) | 25 | −55.0 | −65.3 |
50 | −55.2 | ||
100 | −55.5 | ||
500 | −58.0 | ||
No.3 (+(NH4)2CO3) | 25 | −17.8 | 166.7 |
50 | −18.6 | ||
100 | −20.3 | ||
500 | −33.9 |
Sample Name | Content CaSO4·2H2O, % | Content CaSO4·0.5H2O, % |
---|---|---|
Pure reagent | 93.18 | 12.0 |
Washed phosphogypsum | 66.9 | 50.7 |
Unwashed phosphogypsum | 81.12 | 22.2 |
No. Reaction | Content CaCO3, % | |
---|---|---|
Acid-Containing Phosphogypsum | Washed Phosphogypsum | |
1 | 61.4 | 70.6 |
2 | 52.5 | 65.0 |
No. Reaction | No. Reaction Products | Chemical Composition, wt. % | |||||
---|---|---|---|---|---|---|---|
CaO | SO3 | SiO2 | SrO | K2O | Na2O | ||
1 | 1 product * | CaCO3 | |||||
90.8 | 1.8 | 0.4 | 4.6 | - | 0.9 | ||
2 product ** | Na2SO4 | ||||||
- | 64.7 | - | - | - | 33.2 | ||
2 | 1 product | CaCO3 | |||||
74.8 | 6.6 | 8.5 | 5.1 | 3.2 | - | ||
2 product | K2SO4 | ||||||
- | 44.9 | - | - | 53.7 | - |
Material | CaCO3 | SrCO3 | SO3 | Na2O | P2O5 | SiO2 | REM |
---|---|---|---|---|---|---|---|
Calcium carbonate | 90.8 | 4.6 | 1.8 | 0.89 | 0.52 | 0.44 | 0.95 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pyagai, I.; Zubkova, O.; Babykin, R.; Toropchina, M.; Fediuk, R. Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum. Materials 2022, 15, 4335. https://doi.org/10.3390/ma15124335
Pyagai I, Zubkova O, Babykin R, Toropchina M, Fediuk R. Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum. Materials. 2022; 15(12):4335. https://doi.org/10.3390/ma15124335
Chicago/Turabian StylePyagai, Igor, Olga Zubkova, Rodion Babykin, Maria Toropchina, and Roman Fediuk. 2022. "Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum" Materials 15, no. 12: 4335. https://doi.org/10.3390/ma15124335
APA StylePyagai, I., Zubkova, O., Babykin, R., Toropchina, M., & Fediuk, R. (2022). Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum. Materials, 15(12), 4335. https://doi.org/10.3390/ma15124335