Mechanical Properties Analysis of Explosive Welded Sheet of AA2519-Ti6Al4V with Interlayer of AA1050 Subjected to Heat-Treatment
Abstract
:1. Introduction
2. Materials and Equipment
3. Results
3.1. Strength Properties
3.2. Microhardness
3.3. Measurements of Residual Stresses
3.3.1. Hole-Drilling Method
- UOUT—output voltage [V];
- U0—supply voltage [V];
- N—coefficient depending on the bridge type—for quarter-bridge N = 1;
- K—strain gauge constant;
- A—coefficient of output signal amplification.
- σmax, σmin—principal stresses;
- ε1, ε2, ε3—strains measured on strain gauges number 1, 2, and 3;
- A, B—coefficients depending on material properties and geometry of rosette and hole;
- α—angle between strain gauge no. 1 and the direction of the nearest principal stress.
3.3.2. X-ray Diffraction Method
4. Summary and Conclusions
- A heat treatment affects the laminate resulting in an increase of the ultimate strength Rm about 7% to the value of 704 MPa and the yield strength R0.2 about 14% to the value of 498 MPa, but it has also negative influence on the ductility decreasing an elongation from 6.5% to 5.8%;
- As a result of heat treatment, the microhardness of titanium alloy remains unchanged but in AA2519 it increased from app. 95 HV0.1 [13] to the value of 150 HV0.1;
- The heat treatment in AA2519 caused fine-grained structure with steady distribution of precipitates in the matrix and additionally a slight sublayer of about 4–6 µm width with some voids observed at the interface between this material and interlayer;
- The surface residual stresses were determined by the hole drilling method and are closely related to distortion. They are compressive on the side of aluminum alloy (to −102 MPa) and tensile on the side of titanium alloy (up to +158 MPa);
- The residual stress state in cross-section was determined by X-ray diffraction method. They are compressive reaching −1250 MPa in Ti6Al4V. The results for AA2519 are very dubious.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Saravanan, S.; Raghukandan, K.; Hokamoto, K. Improved microstructure and mechanical properties of dissimilar explosive cladding by means of interlayer technique. Arch. Civ. Mech. Eng. 2016, 16, 563–568. [Google Scholar] [CrossRef]
- Loureiro, A.; Carvalho, G.H.S.F.L.; Galvão, I.; Leal, R.M.; Mendes, R. Chapter 6–Explosive Welding. In Advanced Joining Processes; da Silva, L., El-Zein, M., Martins, P., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 207–237. [Google Scholar] [CrossRef]
- Sniezek, L.; Szachogluchowicz, I.; Gocman, K. The Mechanical Properties of Composites AA2519-Ti6Al4V Obtained by Detonation Method. In Proceedings of the 8th International Conference on Intelligent Technologies in Logistics and Mechatronics Systems, ITELMS 2013, Panevėžys, Lithuania, 23–24 May 2013; pp. 214–219. [Google Scholar]
- Szachogłuchowicz, I.; Hutsaylyuk, V.; Sniezek, L. Low cycle fatigue properties of AA2519-Ti6Al4V. Procedia Eng. 2015, 114, 26–33. [Google Scholar] [CrossRef] [Green Version]
- Bataev, I.A.; Bataev, A.A.; Mali, V.I.; Pavliukova, D.V. Structural and mechanical properties of metallic–intermetallic laminate composites produced by explosive welding and annealing. Mater. Des. 2012, 35, 225–234. [Google Scholar] [CrossRef]
- Rohatgi, A.; Harach, D.J.; Vecchio, K.S.; Harvey, K.P. Resistance-curve and fracture behavior of Ti–Al3Ti metallic–intermetallic laminate (MIL) composites. Acta Mater. 2003, 51, 2933–2957. [Google Scholar] [CrossRef]
- Jiang, S.-Y.; Li, S.-C.; Zhang, L. Microstructure evolution of Al-Ti liquid-solid interface. Trans. Nonferrous Met. Soc. China 2013, 23, 3545–3552. [Google Scholar] [CrossRef]
- Luo, J.G.; Acoff, V.L. Using cold roll bonding and annealing to process Ti/Al multi-layered composites from elemental foils. Mater. Sci. Eng. A 2004, 379, 164–172. [Google Scholar] [CrossRef]
- Peng, L.M.; Li, H.; Wang, J.H. Processing and mechanical behavior of laminated titanium–titanium tri-aluminide (Ti–Al3Ti) composites. Mater. Sci. Eng. A 2005, 406, 309–318. [Google Scholar] [CrossRef]
- Peng, L.; Wang, J.; Li, H.; Zhao, J.; He, L. Synthesis and microstructural characterization of Ti–Al3Ti metal–intermetallic laminate (MIL) composites. Scr. Mater. 2005, 52, 243–248. [Google Scholar] [CrossRef]
- Walczak, W. Zgrzewanie wybuchowe metali i jego zastosowania. Zesz. Nauk. 2002, 51, 15–22. [Google Scholar]
- ASTM Standard E 837; Determining Residual Stress by the Hole-Drilling Strain-Gage Method. ASTM International: West Conshohocken, PA, USA, 2020.
- Tech Note TN-503-6; Measurement of Residual Stresses by the Hole-Drilling Strain Gage Method. Micro-Measurements. Vishay Precision Group: Malvern, PA, USA, 2010.
- ISO 6892-1:2016; Metallic Materials—Tensile Testing—Part 1: Method of Test at Room Temperature. National Standards Authority of Ireland: Dublin, Ireland, 2016.
- ISO 6507-1:2007; Metallic Materials—Vickers Hardness Test—Part 1: Test Method. European Committee for Standardization: Brussels, Belgium, 2018.
- Szachogluchowicz, I.; Śnieżek, L.; Ślęzak, T.; Kluczyński, J.; Grzelak, K.; Torzewski, J.; Fras, T. Mechanical Properties Analysis of the AA2519-AA1050-Ti6Al4V Explosive Welded Laminate. Materials 2020, 13, 4348. [Google Scholar] [CrossRef] [PubMed]
Strength Properties | Chemical Composition [wt%] | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
R0.2 [MPa] | Rm [MPa] | A [%] | Si | Fe | Cu | Mg | Zn | Ti | V | Zr | Sc | Al |
312 | 335 | 6.5 | 0.06 | 0.08 | 5.77 | 0.18 | 0.01 | 0.04 | 0.12 | 0.2 | 0.36 | rest |
Strength Properties | Chemical Composition [wt%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
R0.2 [MPa] | Rm [MPa] | A [%] | O | V | Al | Fe | H | C | N | Ti |
950 | 1020 | 14 | <0.20 | 3.5 | 5.5 | <0.30 | <0.0015 | <0.08 | <0.05 | rest |
Scheme | Chemical Composition [wt%] | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
R0.2 [MPa] | Rm [MPa] | A [%] | Fe | Si | Zn | Mg | Ti | Mn | Cu | Al |
78 | 168 | 2.9 | 0.4% | <0.25 | <0.07 | 0.18 | <0.05 | <0.05 | <0.05 | rest |
AA2519 | |||||||||
---|---|---|---|---|---|---|---|---|---|
Number of Measuring Point | |||||||||
# 1 | # 2 | # 3 | |||||||
depth [mm] | 0.0 | 0.5 | 1.0 | 0.0 | 0.5 | 1.0 | 0.0 | 0.5 | 1.0 |
residual stresses s [MPa] and angular orientation a [°] | |||||||||
smax | −10 | 49 | 108 | −27 | 59 | 146 | −25 | 56 | 136 |
smin | −102 | −66 | −31 | −98 | −26 | 45 | −88 | 1 | 90 |
a | −81 | −77 | −74 | −88 | −82 | −77 | −86 | −86 | −87 |
Ti6Al4V | |||||||||
Number of measuring point | |||||||||
# 1 | # 2 | # 3 | |||||||
depth [mm] | 0.0 | 0.5 | 1.0 | 0.0 | 0.5 | 1.0 | 0.0 | 0.5 | 1.0 |
residual stresses s [MPa] and angular orientation a [°] | |||||||||
smax | 134 | 285 | 436 | 132 | 166 | 201 | 158 | 329 | 509 |
smin | 8 | 120 | 232 | 39 | 85 | 128 | 61 | 223 | 376 |
a | −32 | −29 | −28 | −19 | −25 | −31 | −6 | 7 | 17 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szachogłuchowicz, I.; Śnieżek, L.; Ślęzak, T. Mechanical Properties Analysis of Explosive Welded Sheet of AA2519-Ti6Al4V with Interlayer of AA1050 Subjected to Heat-Treatment. Materials 2022, 15, 4023. https://doi.org/10.3390/ma15114023
Szachogłuchowicz I, Śnieżek L, Ślęzak T. Mechanical Properties Analysis of Explosive Welded Sheet of AA2519-Ti6Al4V with Interlayer of AA1050 Subjected to Heat-Treatment. Materials. 2022; 15(11):4023. https://doi.org/10.3390/ma15114023
Chicago/Turabian StyleSzachogłuchowicz, Ireneusz, Lucjan Śnieżek, and Tomasz Ślęzak. 2022. "Mechanical Properties Analysis of Explosive Welded Sheet of AA2519-Ti6Al4V with Interlayer of AA1050 Subjected to Heat-Treatment" Materials 15, no. 11: 4023. https://doi.org/10.3390/ma15114023
APA StyleSzachogłuchowicz, I., Śnieżek, L., & Ślęzak, T. (2022). Mechanical Properties Analysis of Explosive Welded Sheet of AA2519-Ti6Al4V with Interlayer of AA1050 Subjected to Heat-Treatment. Materials, 15(11), 4023. https://doi.org/10.3390/ma15114023