Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications
Abstract
:1. Introduction
2. Useful Methods for the Synthesis of Nanostructure Carbon from Agro-Waste
2.1. Pyrolysis
2.2. Microwave
2.3. Hydrothermal
2.4. Microwave Hydro-Thermal Carbonization (MHC)
2.5. Carbon by General Carbonizations
3. Preparation of Nanocarbon from Various Agricultural Wastes
3.1. Sugarcane Waste
3.2. Pineapple
3.2.1. From Pineapple Solid Biomass
3.2.2. From Pineapple Crown
3.3. Risk Husk
3.4. From Date Palm
3.5. From Nicotine Tabacum Stems
3.6. From Various Types of Seeds
3.6.1. From Lapsi Seed Stone
3.6.2. From Rubber-Seed Shell
3.7. From Coconut Shell
3.8. From Sugarcane Bagasse
3.9. From Nicotiana Tabacum Stems
3.10. From Orange Peel
4. Application
4.1. Energy Storage Applications (Used in Battery, Supercapacitor, and Fuel Cell)
4.2. Used in Polymer Nano-Composite Materials
4.3. Used in Biosensors
4.4. Used in Water Treatment
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shenderova, O.A.; Zhirnov, V.V.; Brenner, D.W. Carbon nanostructures. Crit. Rev. Solid State Mater Sci. 2002, 27, 227–356. [Google Scholar] [CrossRef]
- Grochala, W. Diamond: Electronic ground state of carbon at temperatures approaching K. Angew. Chem. Int. Ed. 2014, 53, 3680–3683. [Google Scholar] [CrossRef] [PubMed]
- Yahya, M.A.; Al-Qodah, Z.; Zanariah Ngah, C.W. Agricultural bio-waste materials as potential sustainable precursors used for activated carbon production: A review. Renew. Sustain. Energy Rev. 2015, 46, 218–235. [Google Scholar] [CrossRef]
- Yunus, Z.M.; Yashni, G.; Al-Gheethi, A.; Othman, N.; Hamdan, R.; Ruslan, N.N. Advanced methods for activated carbon from agriculture wastes; a comprehensive review. Int. J. Environ. Anal. Chem. 2022, 102, 134–158. [Google Scholar] [CrossRef]
- Yuan, X.; Dissanayake, P.D.; Gao, B.; Liu, W.; Lee, K.B.; Ok, Y.S. Review on upgrading organic waste to value-added carbon materials for energy and environmental applications. J. Environ. Manag. 2021, 296, 113128. [Google Scholar] [CrossRef]
- Ghasemi, M.; Shahgaldi, S.; Ismail, M.; Yaakob, Z.; Daud, W.R.W. New generation of carbon nanocomposite proton exchange membranes in microbial fuel cell systems. Chem. Eng. J. 2012, 184, 82–89. [Google Scholar] [CrossRef]
- Ghasemi, M.; Daud, W.R.W.; Hassan, S.H.A.; Oh, S.E.; Ismail, M.; Rahimnejad, M.; Jahim, J.M. Nano-structured carbon as electrode material in microbial fuel cells: A comprehensive review. J. Alloy. Compd. 2013, 580, 245–255. [Google Scholar] [CrossRef]
- Ogunlude, P.; Abunumah, O.; Orakwe, I.; Shehu, H.; Muhammad-sukki, F.; Gobina, E. Comparative evaluation of the effect of pore size and temperature on gas transport in nano-structured ceramic membranes for biogas upgrading. WEENTECH Proc. Energy 2019, 5, 195–205. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhu, Z.; Shen, B.; Liu, L. Insights into biochar and hydrochar production and applications: A review. Energy 2019, 171, 581–598. [Google Scholar] [CrossRef]
- Zhu, Z.; Rezende, C.A.; Simister, R.; McQueen-Mason, S.J.; Macquarrie, D.J.; Polikarpov, I.; Gomez, L.D. Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 2016, 93, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Zheng, X.T.; Ananthanarayanan, A.; Luo, K.Q.; Chen, P. Glowing graphene quantum dots and carbon dots: Properties, syntheses, and biological applications. Small 2015, 11, 1620–1636. [Google Scholar] [CrossRef] [PubMed]
- Georgakilas, V.; Perman, J.A.; Tucek, J.; Zboril, R. Broad family of carbon nanoallotropes: Classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures. Chem. Rev. 2015, 115, 4744–4822. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Wang, H.; Gong, Q.; Zhang, L.; Cui, G.; Li, Q.; Chen, L.; Wu, F.; Wang, S. Highly luminescent carbon nanoparticles as yellow emission conversion phosphors. Mater. Lett. 2015, 143, 290–293. [Google Scholar] [CrossRef]
- Rui, X.; Li, M.; Song, J.; Shen, Z.; Zeng, H. Carbon and graphene quantum dots for optoelectronic and energy devices: A review. Adv. Funct. Mater. 2015, 25, 4929–4947. [Google Scholar]
- Cui, B.; Fenga, X.T.; Zhanga, F.; Wang, Y.L.; Liu, X.G.; Yang, Y.Z.; Jia, H.S. The use of carbon quantum dots as fluorescent materials in white LEDs. New Carbon Mater. 2017, 32, 385–401. [Google Scholar] [CrossRef]
- Rad, T.S.; Ansarian, Z.; Khataee, A.; Vahid, B.; Doustkhah, E. N-doped graphitic carbon as a nanoporous MOF-derived nanoarchitecture for the efficient sonocatalytic degradation process. Sep. Purif. Technol. 2021, 256, 117811. [Google Scholar]
- Chaikittisilp, W.; Hu, M.; Wang, H.; Huang, H.S.; Fujita, T.; Wu, C.W.; Chen, L.C.; Yamauchi, Y.; Ariga, K. Nanoporous carbons through direct carbonization of a zeolitic imidazolate framework for supercapacitor electrodes. Chem. Commun. 2012, 48, 7259–7261. [Google Scholar] [CrossRef]
- Marpaung, F.; Kim, M.; Khan, J.S.; Konstantinov, K.; Yamauchi, Y.; Hossain, S.A.; Na, J.; Kim, J. Metal–organic framework (MOF)-derived nanoporous carbon materials. Chem. Asian J. 2019, 14, 1331–1343. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, Z.; Liu, C.; Ye, L.; Zhou, Y.; Meng, Q.; Zhang, G.; Gao, C. Functionalized MOF-Derived Nanoporous Carbon as Compatible Nanofiller to Fabricate Defect-Free PDMS-Based Mixed Matrix Pervaporation Membranes. ACS Omega 2022, 7, 15786–15794. [Google Scholar] [CrossRef]
- Sun, X.; Liu, Y.; Xu, R.; Chen, Y. MOF-derived nanoporous carbon incorporated in the cation exchange membrane for gradient power generation. Membranes 2022, 12, 322. [Google Scholar] [CrossRef]
- Kim, J.; Kim, S.J.; Kim, D.K. Energy harvesting from salinity gradient by reverse electrodialysis with anodic alumina nanopores. Energy 2013, 51, 413–421. [Google Scholar] [CrossRef]
- Slepicka, P.; Hubáček, T.; Kolská, Z.; Trostová, S.; Kasálková, N.S.; Bačáková, L.; Švorčík, V. The properties and application of carbon nanostructures. In Polymer Science; IntechOpen: London, UK, 2013. [Google Scholar]
- Hoa, L.Q.; Vestergaard, M.C.; Tamiya, E. Carbon-based nanomaterials in biomass-based fuel-fed fuel cells. Sensors 2017, 17, 2587. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moronshing, M.; Sah, A.; Kalyani, V.; Subramaniam, C. Nanostructured carbon florets as scavenger of As3+, Cr6+, Cd2+, and Hg2+ for water remediation. ACS Appl. Nano Mater. 2020, 3, 468–478. [Google Scholar] [CrossRef] [Green Version]
- Saifuddin, N.; Raziah, A.Z.; Juniazah, A.R. Carbon nanotube: A review on structure and their interaction. J. Chem. 2013, 2013, 676815. [Google Scholar] [CrossRef]
- Gu, W.; Yushin, G. Review of nanostructured carbon materials for electrochemical capacitor applications: Advantages and limitations of activated carbon, carbide-derived carbon, zeolite-templated carbon, carbon aerogels, carbon nanotubes, onion-like carbon, and graphene. WIREs Energy Environ. 2014, 3, 424–473. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, H.; Lu, Y.; Wei, S.; Wujcik, E.K.; Guo, Z. Multifunctional carbon nanostructures for advanced energy storage applications. Nanomaterials 2015, 5, 755–777. [Google Scholar] [CrossRef]
- Saleem, A.M.; Desmaris, V.; Enoksson, P. Performance enhancement of carbon nanomaterials for supercapacitors. J. Nanomater. 2016, 2016, 1537269. [Google Scholar] [CrossRef] [Green Version]
- Bose, S.; Kuila, T.; Mishra, A.K.; Rajasekar, R.; Kim, N.H.; Lee, J.H. Carbon-based nanostructured materials and their composites as supercapacitor electrodes. J. Mater. Chem. 2012, 22, 767–784. [Google Scholar] [CrossRef]
- Alshareef, N.H.; Whitehair, D.; Xia, C. The impact of surface chemistry on bio-derived carbon performance as supercapacitor electrodes. J. Electron. Mater. 2017, 46, 1628–1636. [Google Scholar] [CrossRef]
- Sun, X.; Lei, Y. Fluorescent carbon dots and their sensing applications. TrAC-Trends Anal. Chem. 2017, 89, 163–180. [Google Scholar] [CrossRef]
- Yang, Z.; Ren, J.; Zhang, Z.; Chen, X.; Guan, G.; Qiu, L.; Zhang, Y.; Peng, H. Recent advancement of nanostructured carbon for energy applications. Chem. Rev. 2015, 115, 5159–5223. [Google Scholar] [CrossRef] [PubMed]
- Selvaraj, M.; Hai, A.; Banat, F.; Haija, M.A. Application and prospects of carbon nanostructured materials in water treatment: A review. J. Water Process Eng. 2020, 33, 100996. [Google Scholar] [CrossRef]
- Lehmann, K.; Yurchenko, O.; Heilemann, A.; Vierrath, S.; Zielke, L.; Thiele, S.; Fischer, A.; Urban, G. High surface hierarchical carbon nanowalls synthesized by plasma deposition using an aromatic precursor. Carbon 2017, 118, 578–587. [Google Scholar] [CrossRef]
- Huang, K.; Liu, F.; Fan, J.P.; Dai, S. Open and hierarchical carbon framework with ultralarge pore volume for efficient capture of carbon dioxide. ACS Appl. Mater. Interfaces 2018, 10, 36961–36968. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, Z.; Chen, Y.; Zhang, H.; Yousaf, M.; Wu, H.; Zou, M.; Cao, A.; Han, R.P.S. Hyperporous sponge interconnected by hierarchical carbon nanotubes as a high-performance potassium-ion battery anode. Adv. Mater. 2018, 30, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Moon, J.; Sim, U.; Kim, D.J.; Ahn, H.Y.; An, J.; Ha, H.; Choi, K.S.; Jeon, C.; Lee, J.; Nam, K.T.; et al. Hierarchical carbon-silicon nanowire heterostructures for the hydrogen evolution reaction. Nanoscale 2018, 10, 13936–13941. [Google Scholar] [CrossRef]
- Sajanlal, P.R.; Sreeprasad, T.S.; Samal, A.K.; Pradeep, T. Anisotropic nanomaterials: Structure, growth, assembly, and functions. Nano Rev. 2011, 2, 5883. [Google Scholar] [CrossRef]
- Feng, H.P.; Tang, L.; Zeng, G.M.; Tang, J.; Deng, Y.C.; Yan, M.; Liu, Y.; Zhou, Y.; Rena, X.; Chen, S. Carbon-based core-shell nanostructured materials for electrochemical energy storage. J. Mater. Chem. A 2018, 6, 7310–7337. [Google Scholar] [CrossRef]
- Bai, H.; He, P.; Pan, J.; Chen, J.; Chen, Y.; Dong, F.; Li, H. Boron-doped diamond electrode: Preparation, characterization and application for electrocatalytic degradation of m-dinitrobenzene. J. Colloid Interface Sci. 2017, 497, 422–428. [Google Scholar] [CrossRef]
- Dai, Q.; Xia, Y.; Chen, J. Mechanism of enhanced electrochemical degradation of highly concentrated aspirin wastewater using a rare earth La-Y co-doped PbO2 electrode. Electrochim. Acta 2016, 188, 871–881. [Google Scholar] [CrossRef]
- Patel, P.S.; Bandre, N.; Saraf, A.; Ruparelia, J.P. Electro-catalytic materials (electrode materials) in electrochemical wastewater treatment. Procedia Eng. 2013, 51, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Lv, J.; Feng, Y.; Liu, J.; Qu, Y.; Cui, F. Comparison of electrocatalytic characterization of boron-doped diamond and SnO2 electrodes. Appl. Surf. Sci. 2013, 283, 900–905. [Google Scholar] [CrossRef]
- Silva, T.A.; Pereira, G.F.; Filho, O.F.; Eguiluz, K.I.B.; Salazar-Banda, G.R. Electroanalytical sensing of indigo carmine dye in water samples using a cathodically pretreated boron-doped diamond electrode. J. Electroanal. Chem. 2016, 769, 28–34. [Google Scholar] [CrossRef]
- Svítková, J.; Ignat, T.; Švorc, Ľ.; Labuda, J.; Barek, J. Chemical modification of boron-doped diamond electrodes for applications to biosensors and biosensing. Crit. Rev. Anal. Chem. 2016, 46, 248–256. [Google Scholar] [CrossRef]
- Panizza, M.; Cerisola, G. Direct and mediated anodic oxidation of organic pollutants. Chem. Rev. 2009, 109, 6541–6569. [Google Scholar] [CrossRef]
- Haidar, M.; Dirany, A.; Sirés, I.; Oturan, N.; Oturan, M.A. Electrochemical degradation of the antibiotic sulfachloropyridazine by hydroxyl radicals generated at a BDD anode. Chemosphere 2013, 91, 1304–1309. [Google Scholar] [CrossRef]
- El-Ghenymy, A.; Cabot, P.L.; Centellas, F.; Garrido, J.A.; Rodríguez, R.M.; Arias, C.; Brillas, E. Electrochemical incineration of the antimicrobial sulfamethazine at a boron-doped diamond anode. Electrochim. Acta 2013, 90, 254–264. [Google Scholar] [CrossRef]
- Dobrota, A.S.; Pašti, I.A.; Mentus, S.V.; Skorodumova, N.V. A general view on the reactivity of the oxygen-functionalized graphene basal plane. Phys. Chem. Chem. Phys. 2016, 18, 6580–6586. [Google Scholar] [CrossRef] [Green Version]
- Alatzas, S.; Moustakas, K.; Malamis, D.; Vakalis, S. Biomass potential from agricultural waste for energetic utilization in greece. Energies 2019, 12, 1095. [Google Scholar] [CrossRef] [Green Version]
- Fathy, N.A.; Basta, A.H.; Lotfy, V.F. Chapter 4—Novel trends for synthesis of carbon nanostructures from agricultural wastes. In Carbon Nanomaterials for Agri-Food and Environmental Applications; Micro and Nano Technologies; Elsevier: Amsterdam, The Netherlands, 2020; pp. 59–74. [Google Scholar]
- Ding, M.; Chen, G.; Xu, W.; Jia, C.; Luo, H. Nano materials science bio-inspired synthesis of nanomaterials and smart structures for electrochemical energy storage and conversion. Nano Mater. Sci. 2019, 2, 264–280. [Google Scholar] [CrossRef]
- Li, Z.; Bai, Z.; Mi, H.; Ji, C.; Gao, S.; Pang, H. Biowaste-derived porous carbon with tuned microstructure for high-energy quasi-solid-state supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 13127–13135. [Google Scholar] [CrossRef]
- Ghosh, S.; Santhosh, R.; Jeniffer, S.; Raghavan, V.; Jacob, G.; Nanaji, K.; Kollu, P.; Jeong, S.K.; Graceet, A.N. Natural biomass derived hard carbon and activated carbons as electrochemical supercapacitor electrodes. Sci. Rep. 2019, 9, 16315. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xiong, B.; Li, H.; Xiao, Y. Progress on synthesis and applications of porous carbon Materials. Int. J. Electrochem. Sci. 2020, 15, 1363–1377. [Google Scholar]
- Rajakumari, R.; Thomasa, S.; Kalarikkal, N. Chapter 9—Synthesis of eco-friendly graphene from agricultural wastes. In Agri-Waste and Microbes for Production of Sustainable; Nanomaterials, Nanobiotechnology for Plant Protection; Elsevier: Amsterdam, The Netherlands, 2022; pp. 215–230. [Google Scholar]
- Elemike, E.E.; Ekennia, A.C.; Onwudiwe, D.C.; Ezeani, R.O. Chapter 8—Agro-waste materials: Sustainable substrates in nanotechnology. In Agri-Waste and Microbes for Production of Sustainable Nanomaterials; Nanobiotechnology for Plant Protection; Elsevier: Amsterdam, The Netherlands, 2022; pp. 187–214. [Google Scholar]
- Lee, J.; Yang, X.; Cho, S.; Kim, J.; Soo, S.; Tsang, D.C.W. Pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication pyrolysis process of agricultural waste using CO2 for waste management, energy recovery, and biochar fabrication. Appl. Energy. 2017, 185, 214–222. [Google Scholar] [CrossRef]
- Zhang, B.; Li, H.; Wang, D.; Lv, H.; Zhang, C. Agricultural waste-derived activated carbon for high performance lithium-ion capacitors. RSC Adv. 2017, 7, 37923–37928. [Google Scholar]
- Maulidiyah, D.; Wibowo, H.; Salamba, R.; Nurdin, M. Preparation and characterization of activated carbon from coconut shell-doped TiO2 in water medium. Orient. J. Chem. 2015, 31, 2337–2342. [Google Scholar] [CrossRef]
- Asnawi, M.; Azhari, S.; Hamidon, M.N.; Ismail, I.; Helina, I. Synthesis of carbon nanomaterials from rice husk via microwave oven. J. Nanomater. 2018, 2018, 2898326. [Google Scholar] [CrossRef] [Green Version]
- Alaya, M.N.; Girgis, B.S.; Mourad, W.E. Activated Carbon from some agricultural wastes under action of one-step steam pyrolysis activated carbon from some agricultural wastes under action of one-step steam pyrolysis. J. Porous Mater. 2018, 7, 509–517. [Google Scholar] [CrossRef]
- Arie, A.A.; Hadisaputra, L.; Susanti, R.F.; Devianto, H.; Halim, M.; Enggar, R.; Lee, J.K. Synthesis of carbon nano materials originated from waste cooking oil using a nebulized spray pyrolysis. J. Phys. Conf. Ser. 2017, 877, 012020. [Google Scholar] [CrossRef] [Green Version]
- Parasuram, B.; Sundaram, S.; Sathiskuma, C.; Karthikeyan, S. Synthesis of multi-walled carbon nanotubes using tire pyrolysis oil as a carbon precursor by spray pyrolysis method. Inorg. Nano-Met. 2018, 48, 103–106. [Google Scholar] [CrossRef]
- Fortunato, M.E.; Rostam-Abadi, M.; Suslick, K.S. Nanostructured carbons prepared by ultrasonic spray pyrolysis. Chem. Mater. 2010, 22, 1610–1612. [Google Scholar] [CrossRef]
- Arif, A.F.; Balgis, R.; Ogi, T.; Mori, T.; Okuyama, K. Experimental and theoretical approach to evaluation of nanostructured carbon particles derived from phenolic resin via spray pyrolysis. Chem. Eng. J. 2015, 271, 79–86. [Google Scholar] [CrossRef]
- Khalil, H.P.S.A.; Jawaid, M.; Firoozian, P.; Rashid, U.; Islam, A.; Akil, H.M. Activated carbon from various agricultural wastes by chemical activation with KOH: Preparation and characterization. J. Biobased Mater. Bioenergy 2013, 7, 708–714. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, S.; Li, Z.; Ma, M.; Wang, B. A microwave synthesized mesoporous carbon sponge as an efficient adsorbent for Cr(VI) removal. RSC Adv. 2018, 8, 7892–7898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Chen, W.; Liab, M.; Hong, S.; Li, W.; Pan, M.; Wu, Q.; Mei, C. Rapid microwave activation of waste palm into hierarchical porous carbons for supercapacitors using biochars from different carbonization temperatures as catalysts. RSC Adv. 2019, 9, 19441–19449. [Google Scholar] [CrossRef] [Green Version]
- Wahi, R.; Senghie, H. The use of microwave derived activated carbon for removal of heavy metal in aqueous solution. J. Sci. Technol. 2011, 3, 1. [Google Scholar]
- Wahi, R.; Mona, S.; Aziz, A.; Hamdan, S.; Ngaini, Z. Biochar production from agricultural wastes via low-temperature microwave carbonization. Proceedings of IEEE International RF and Microwave Conference (RFM), Kuching, Malaysia, 14–16 December 2015; pp. 244–247. [Google Scholar]
- Hoseinzadeh, R.; Mohd, W.; Wan, A.; Sahu, J.N.; Arami-niya, A. The effects of a microwave heating method on the production of activated carbon from agricultural waste: A review. J. Anal. Appl. Pyrolysis 2013, 100, 1–11. [Google Scholar] [CrossRef]
- Roshni, V.; Divya, O. One-step microwave-assisted green synthesis of luminescent N-doped carbon dots from sesame seeds for selective sensing of Fe(III). Curr. Sci. 2017, 112, 385–390. [Google Scholar] [CrossRef]
- Sharif, Y.M.; Saka, C.; Baytar, O.; Şahin, Ö. Preparation and characterization of activated carbon from sesame seed shells by microwave and conventional heating with zinc chloride activation. Anal. Lett. 2018, 51, 2733–2746. [Google Scholar] [CrossRef]
- Sharma, R.; Jasrotia, K.; Singh, N.; Ghosh, P.; Srivastava, S.; Sharma, N.R. A comprehensive review on hydrothermal carbonization of biomass and its applications. Chem. Afr. 2019, 3, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Allwar, A.; Febriyantri, H.Z.; Yuliantari, R. Preparation and characterization of hydrothermal activated carbon from banana empty fruit bunch with ZnCl2 activation for removal of phenol in aqueous solution. Asian J. Appl. Sci. 2018, 11, 20–28. [Google Scholar] [CrossRef] [Green Version]
- Jain, A.; Balasubramanian, R.; Srinivasan, M.P. Hydrothermal conversion of biomass waste to activated carbon with high porosity: A review. Chem. Eng. J. 2017, 283, 789–805. [Google Scholar] [CrossRef]
- Purnomo, C.W.; Castello, D.; Fiori, L. Granular Activated carbon from grape seeds hydrothermal char. Appl. Sci. 2018, 8, 331. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhai, Y.; Zhu, Y.; Li, C.; Zeng, G. A review of the hydrothermal carbonization of biomass waste for hydrochar formation: Process conditions, fundamentals, and physicochemical properties. Renew. Sustain. Energy Rev. 2016, 90, 223–247. [Google Scholar] [CrossRef]
- Hoffmann, V.; Jung, D.; Zimmermann, J.; Correa, C.R.; Elleuch, A.; Halouani, K.; Kruse, A. Conductive carbon materials from the hydrothermal carbonization of vineyard residues for the application in electrochemical double-layer capacitors (EDLCs) and direct carbon fuel cells (DCFCs). Materials 2019, 12, 1703. [Google Scholar] [CrossRef] [Green Version]
- Nizamuddin, S.; Jadhav, A.; Qureshi, S.S.; Baloch, H.A.; Siddiqui, M.T.H.; Mubarak, N.M.; Griffin, G.; Madapusi, S.; Tanksale, A.; Ahamed, M.I. Synthesis and characterization of polylactide/rice husk hydrochar composite. Sci. Rep. 2019, 9, 5445. [Google Scholar] [CrossRef] [PubMed]
- Tahir, M.; Siddiqui, H.; Takkalkar, P.; Mubarak, N.M. Microwave hydrothermal carbonization of rice straw: Optimization of process parameters and upgrading of chemical, fuel, structural and and thermal properties. Materials 2019, 12, 403. [Google Scholar]
- Ratan, J.K.; Kaur, M.; Adiraju, B. Synthesis of activated carbon from agricultural waste using a simple method: Characterization, parametric and isotherms study. Mater. Today Proc. 2018, 5, 3334–3345. [Google Scholar] [CrossRef]
- Zubairu, A.; Gana, S.A. Production and characterization of briquette charcoal by carbonization of agro-waste. Energy Power 2014, 4, 41–47. [Google Scholar]
- Billa, S.F.; Evaristus, T.; Ajebesone, A.; Ngome, F. Agro-environmental characterization of biochar issued from crop wastes in the humid forest zone of Cameroon. Int. J. Recycl. Org. Waste Agric. 2019, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Somanathan, T.; Prasad, K.; Ostrikov, K.K. Graphene oxide synthesis from agro waste. Nanomaterials 2015, 5, 826–834. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lara-Romero, J.; Campos-García, J.; Dasgupta-Schubert, N.; Borjas-García, S.; Tiwari, D.K.; Paraguay-Delgado, F.; Jiménez-Sandoval, S.; Alonso-Nuñez, G.; Gómez-Romero, M.; Lindig-Cisneros, R.; et al. Biological effects of carbon nanotubes generated in forest wildfire ecosystems rich in resinous trees on native plants. Peer J. 2017, 5, e3658. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murr, L.E.; Guerrero, P.A. Carbon nanotubes in wood soot. Atmos. Sci. Let. 2006, 7, 93–95. [Google Scholar] [CrossRef]
- Liu, Y.; Yang, X.; Zhang, J.; Zhu, Z. Process Simulation of Preparing Biochar by Biomass Pyrolysis Via Aspen Plus and Its Economic Evaluation. Waste Biomass Valorization 2022, 13, 2609–2622. [Google Scholar] [CrossRef]
- Baraton, M.I. Synthesis, Functionalization and Surface Treatment of Nanoparticles; American Scientific Publishers: Los Angeles, CA, USA, 2003; 323p, ISBN 1-58883-009-8. [Google Scholar]
- Bachrun, S.; Ayurizka, N.; Annisa, S.; Arif, H. Preparation and characterization of activated carbon from sugarcane bagasse by physical activation with CO2 gas. IOP Conf. Ser. Mater. Sci. Eng. 2016, 105, 012027. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, E.F.; El-Hashemy, M.A.; Abdel-Latif, N.M.; Shetaya, W.H. Production of sugarcane bagasse-based activated carbon for formaldehyde gas removal from potted plants exposure chamber. J. Air Waste Manag. Assoc. 2015, 65, 1413–1420. [Google Scholar] [CrossRef]
- Chaiwon, T.; Jannoey, P.; Channei, D. Preparation of activated carbon from sugarcane bagasse waste for the adsorption equilibrium and kinetics of basic dye. Key Eng. Mater. 2017, 751, 671–676. [Google Scholar] [CrossRef]
- Mahamad, M.N.; Zaini, M.A.A.; Zakaria, Z.A. Preparation and characterization of activated carbon from pineapple waste biomass for dye removal. Int. Biodeterior. Biodegrad. 2015, 102, 274–280. [Google Scholar] [CrossRef]
- Taer, E.; Apriwandi, A.; Ningsih, Y.S.; Taslim, R.; Agustino, A. Preparation of activated carbon electrode from pineapple crown waste for supercapacitor application. Int. J. Electrochem. Sci. 2019, 14, 2462–2475. [Google Scholar] [CrossRef]
- Taer, E.; Taslim, R. Brief review: Preparation techniques of biomass based activated carbon monolith electrode for supercapacitor applications. AIP Conf. Proc. 2018, 1927, 020004. [Google Scholar]
- Basri, N.H.; Deraman, M.; Suleman, M.; Khiew, P.S.; Yatim, B.; Nor, N.S.M.; Sazali, N.E.S.; Hamdan, E.; Hanappi, M.F.Y.M.; Bakri, W.F.W.; et al. Asymmetric supercapacitor based on NiO and activated carbon monolith from fibers of oil palm empty fruit bunches. AIP Conf. Proc. 2016, 1784, 040007. [Google Scholar]
- Taer, E.; Dewi, P.; Sugianto, R.; Syech, R.; Taslim, R.; Salomo; Susanti, Y.; Purnama, A.; Apriwandi, A.; Setiadi, R.N. The synthesis of carbon electrode supercapacitor from durian shell based on variations in the activation time. AIP Conf. Proc. 2018, 1927, 030026. [Google Scholar]
- Taer, E.; Afrianda, A.; Taslim, R.; Krisman; Minarni; Agustino, A.; Apriwandi, A.; Malik, U. The physical and electrochemical properties of activated carbon electrode made from Terminalia Catappa leaf (TCL) for supercapacitor cell application. J. Phys. Conf. Ser. 2018, 1120, 012007. [Google Scholar] [CrossRef] [Green Version]
- Taer, E.; Apriwandi, A.; Taslim, R.; Malik, U.; Usman, Z. Single step carbonization-activation of durian shells for producing activated carbon monolith electrodes. Int. J. Electrochem. Sci. 2019, 14, 1318–1330. [Google Scholar] [CrossRef]
- Liou, T.H. Preparation and characterization of nano-structured silica from rice husk. Mater. Sci. Eng. A 2004, 364, 313–323. [Google Scholar] [CrossRef]
- Raman, M.S.N.; Ismail, N.A.; Jamari, S.S. Preparation and characterization of impregnated commercial rice husks activated carbon with piperazine for carbon dioxide (CO2) Capture. IOP Conf. Ser. Mater. Sci. Eng. 2017, 206, 12005. [Google Scholar] [CrossRef]
- Shrestha, L.; Thapa, M.; Shrestha, R.; Maji, S.; Pradhananga, R.; Ariga, K. Rice husk-derived high surface area nanoporous carbon materials with excellent iodine and methylene blue adsorption properties. J. Carbon Res. 2019, 5, 10. [Google Scholar] [CrossRef] [Green Version]
- Hussein, F.H.; Halbus, A.F.; Lafta, A.J.; Athab, Z.H. Preparation and characterization of activated carbon from iraqi khestawy date palm. J. Chem. 2015, 2015, 295748. [Google Scholar] [CrossRef] [Green Version]
- Musuna-Garwe, C.C.; Mukaratirwa-Muchanyereyi, N.; Mupa, M.; Mahamadi, C.; Mujuru, M. Preparation and characterization of nanocarbons from Nicotiana tabacum stems. AIMS Mater. Sci. 2018, 5, 1242–1254. [Google Scholar] [CrossRef]
- Joshi, S.; Pokharel, B.P. Preparation and characterization of activated carbon from lapsi (Choerospondias axillaris) seed stone by chemical activation with potassium hydroxide. J. Inst. Eng. 2014, 9, 79–88. [Google Scholar] [CrossRef] [Green Version]
- Rajbhandari, R.; Shrestha, L.K.; Pradhananga, R.R. Preparation of activated carbon from lapsi seed stone and its application for the removal of arsenic from water. J. Inst. Eng. 2011, 8, 211–218. [Google Scholar] [CrossRef]
- Joshi, S.; Shrestha Kumara, L.S.; Yuichiro, K.; Yusuke, Y.; Adhikari, P.M.; Prasad, P.B.; Katsuhiko, A.; Ram, P.R. Sodium hydroxide activated nanoporous carbons based on Lapsi seed stone. J. Nanosci. Nanotechnol. 2015, 15, 1465–1472. [Google Scholar] [CrossRef] [PubMed]
- Rajeshwar, S.M.; Amar, Y.P.; Bhadra, P.P.; Ram, P.R. Preparation and characterization of activated carbon from lapsi (choerospondias axillaris) seed stone by chemical activation with phosphoric acid. Res. J. Chem. Sci. 2012, 2, 80–86. [Google Scholar]
- Sun, K.; Jiang, J.C. Preparation and characterization of activated carbon from rubber-seed shell by physical activation with steam. Biomass Bioenergy 2010, 34, 539–544. [Google Scholar] [CrossRef]
- Schroeder, M.A.; Salloum, K.S.; Perbost, M.; Lebl, M.; Posner, J.D. Radial flow electroosmotic pump. Sens. Actuators A Phys. 2011, 169, 250–255. [Google Scholar] [CrossRef]
- Pagketanang, T.; Artnaseaw, A.; Wongwicha, P.; Thabuot, M. Microporous activated carbon from koh-activation of rubber seed-shells for application in capacitor electrode. Energy Procedia 2015, 79, 651–656. [Google Scholar] [CrossRef] [Green Version]
- Doloksaribu, M.; Prihandoko, B.; Triyana, K. Preparation and characterization of activated carbon based on coconut shell for supercapacitor. Int. J. Sci. Basic Appl. Res. 2017, 35, 430–437. [Google Scholar]
- Das, D.; Samal, D.P.; Malikap, B.C. Preparation of activated carbon from green coconut shell and its characterization. J. Chem. Eng. Process Technol. 2015, 128, 1–7. [Google Scholar] [CrossRef]
- Alves, J.O.; Tenório, J.A.S.; Zhuo, C.; Levendis, Y.A. Characterization of nanomaterials produced from sugarcane bagasse. J. Mater. Res. Technol. 2012, 1, 31–34. [Google Scholar] [CrossRef] [Green Version]
- Ranaweera, C.K.; Kahol, P.K.; Ghimire, M.; Mishra, S.R.; Gupta, R.K. Orange-peel-derived carbon: Designing sustainable and high-performance supercapacitor electrodes. J. Carbon Res. 2017, 3, 25. [Google Scholar] [CrossRef]
- Sodtipinta, J.; Amornsakchai, T.; Pakawatpanurut, P. Nanoporous carbon derived from agro-waste pineapple leaves for supercapacitor electrode. Adv. Nat. Sci. Nanosci. Nanotechnol. 2017, 8, 3. [Google Scholar] [CrossRef]
- Nasir, S.; Hussein, M.Z.; Zainal, Z.; Yusof, N.A. Carbon-based nanomaterials/allotropes: A glimpse of their synthesis, properties and some applications. Materials 2018, 11, 295. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Müller, K.; Bugnicourt, E.; Latorre, M.; Jorda, M.; Sanz, Y.E.; Lagaron, M.J.; Miesbauer, O.; Bianchin, A.; Hankin, S.; Bölz, U.; et al. Review on the processing and properties of polymer nanocomposites and nanocoatings and their applications in the packaging, automotive and solar energy field. Nanomaterials 2017, 7, 74. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javed, M.; Abbas, S.M.; Hussain, S.; Siddiq, M.; Han, D.; Niu, L. Amino-functionalized silica anchored to multiwall carbon nanotubes as hybrid electrode material for supercapacitors. Mater. Sci. Energy Technol. 2018, 1, 70–76. [Google Scholar] [CrossRef]
- Fajardo, S.; García-Galvan, F.R.; Barranco, V.; Galvan, J.C.; Batlle, S.F. Chapter 2—A Critical Review of the Application of Electrochemical Techniques for Studying Corrosion of Mg and Mg Alloys: Opportunities and Challenges. In Magnesium Alloys: Selected, Issue; BoD-Books on Demand; Tański, T., Borek, W., Król, M., Eds.; IntechOpen: London, UK, 2018. [Google Scholar]
- Abd-Elsalam, K.A. Carbon nanomaterials: 30 years of research in agroecosystems. In Carbon Nanomaterials for Agri-Food and Environmental Applications; Micro and Nano Technologies; Elsevier Inc.: Amsterdam, The Netherlands, 2020. [Google Scholar]
- Pandit, S.; Dasgupta, D.; Dewan, N.; Ahmed, P. Nanotechnology based biosensors and its application. Pharma Innov. J. 2016, 5, 18–25. [Google Scholar]
- Kawahara, T.; Hiramatsu, H.; Suzuki, Y.; Nakakita, S.; Ohno, Y.; Maehashi, K.; Matsumoto, K.; Okamoto, K.; Matsuba, T.; Utsunomiya, R. Development of Nano-Carbon Biosensors Using Glycan for Host Range Detection of Influenza Virus. Condens. Matter 2016, 1, 7. [Google Scholar] [CrossRef] [Green Version]
- Sireesha, M.; Jagadeesh Babu, V.; Kiran, A.S.K.; Ramakrishna, S. A review on carbon nanotubes in biosensor devices and their applications in medicine. Nanocomposites 2018, 4, 36–57. [Google Scholar] [CrossRef]
- Benjamin, S.R.; Vilela, R.S.; de Camargo, H.S.; Guedes, M.I.F.; Fernandes, K.F.; Colmati, F. Enzymatic electrochemical biosensor based on multiwall carbon nanotubes and cerium dioxide nanoparticles for rutin detection. Int. J. Electrochem. Sci. 2018, 13, 563–586. [Google Scholar] [CrossRef]
- Jirimali, H.D.; Nagarale, R.K.; Saravanakumar, D.; Lee, J.M.; Shin, W. Hydroquinone modified chitosan/carbon film electrode for the selective detection of ascorbic acid. Carbohydr. Polym. 2013, 92, 641–644. [Google Scholar] [CrossRef]
- Jirimali, H.D.; Saravanakumar, D.; Shin, W. Preparation of catechol-linked chitosan/carbon nanocomposite-modified electrode and its applications. Bull. Korean Chem. Soc. 2015, 36, 4. [Google Scholar]
- Jirimali, H.D.; Saravanakumar, D.; Shin, W. Chitosan-Cu-salen/carbon nano-composite based electrode for the enzyme-less electrochemical sensing of hydrogen peroxide. J. Electrochem. Sci. Technol. 2018, 9, 169–175. [Google Scholar] [CrossRef]
- Mendes, R.G.; Wróbel, P.S.; Bachmatiuk, A.; Sun, J.; Gemming, T.; Liu, Z.; Rümmeli, H. Carbon nanostructures as a multi-functional platform for sensing applications. Chemosensors 2018, 6, 4. [Google Scholar] [CrossRef] [Green Version]
- Aliakbarinodehi, N.; Taurino, I.; Pravin, J.; Tagliaferro, A.; Piccinini, G.; Micheli, G.; Carrara, S. Electrochemical nanostructured biosensors: Carbon nanotubes versus conductive and semi-conductive nanoparticles. Chem. Pap. 2015, 69, 134–142. [Google Scholar] [CrossRef]
- Jirimali, H.D. Advance biomedical sensors and transducers. In Biomedical Engineering and its Applications in Healthcare; Springer: Singapore, 2019; pp. 153–168. [Google Scholar]
- Ali, H.R.; Hassaan, M.A. Applications of bio-waste materials as green synthesis of nanoparticles and water purification. Adv. Mater. 2017, 6, 85. [Google Scholar] [CrossRef] [Green Version]
- Baby, R.; Saifullah, B.; Hussein, M.Z. Carbon nanomaterials for the treatment of heavy metal-contaminated water and environmental remediation. Nanoscale Res. Lett. 2019, 14, 1. [Google Scholar] [CrossRef] [Green Version]
- Silva, A.; Martinez-Gallegos, S.; Rosano-Ortega, G.G.; Schabes-Retchkiman, P.; Vega-Lebrun, C.; Albiter, V. The role of nanomaterials as effective adsorbents and their applications in wastewater treatment. J. Nanostructure Chem. 2017, 7, 1–12. [Google Scholar]
- Abdelbasir, S.M.; Shalan, A.E. An overview of nanomaterials for industrial wastewater treatment. Korean J. Chem. Eng. 2019, 36, 1209–1225. [Google Scholar] [CrossRef]
- Yan, Y.; Zhang, M.; Gong, K.; Su, L.; Guo, Z.; Mao, L. Adsorption of methylene blue dye onto carbon nanotubes: A route to an electrochemically functional nanostructure and its layer-by-layer assembled nanocomposite. Chem. Mater. 2005, 17, 3457–3463. [Google Scholar] [CrossRef]
- Yaqoob, A.A.; Parveen, T.; Umar, K.; Ibrahim, M.N.M. Role of nanomaterials in the treatment of wastewater: A review. Water 2020, 12, 495. [Google Scholar] [CrossRef] [Green Version]
S. No | Agricultural Waste | Method of Synthesis | Carbon Structured Formed | Reference |
---|---|---|---|---|
1 | Sugar cane | By pyrolysis | Carbon nanotube | 100 |
2 | Pine apple | By hydrothermal | 3D continuous network of homogeneous micro/mesopore structure | 105 |
3 | Rice husk | By microwave | Carbon nano tube | 82 |
4 | Date palm | By hydrothermal | Porous carbon | 104 |
5 | Nicotine tabacum stems | By carbonization | Nanocarbons | 101 |
6 | Lapsi seeds, Rubber-seeds | By chemical activation | Honey comb structure | 91 |
7 | Coconut shells | By pyrolysis methods | Mesoporous | 97 |
8 | Orange peels | Chemical activation as well as pyrolysis | Sheet-like structure | 102 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jirimali, H.; Singh, J.; Boddula, R.; Lee, J.-K.; Singh, V. Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications. Materials 2022, 15, 3969. https://doi.org/10.3390/ma15113969
Jirimali H, Singh J, Boddula R, Lee J-K, Singh V. Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications. Materials. 2022; 15(11):3969. https://doi.org/10.3390/ma15113969
Chicago/Turabian StyleJirimali, Harishchandra, Jyoti Singh, Rajamouli Boddula, Jung-Kul Lee, and Vijay Singh. 2022. "Nano-Structured Carbon: Its Synthesis from Renewable Agricultural Sources and Important Applications" Materials 15, no. 11: 3969. https://doi.org/10.3390/ma15113969