Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol
Abstract
:1. Introduction
2. Materials and Methods
2.1. Biochars
2.2. DOC Sequential Extraction Experiments
2.3. Concentration and UV–vis Analyses of Biochar-Derived DOC
2.4. EEM Fluorescence and PARAFAC of DOC
2.5. Statistical Analysis
3. Results and Discussion
3.1. Distribution of DOC Content in Water, Hot Water and NaOH Solution
3.2. Aromatic Abundance and Molecule Characteristics of DOC in Water, Hot Water and NaOH Solution
3.3. Fluorescence Characteristic and Compositions of DOC
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yin, J.; Zhao, L.; Xu, X.; Li, D.; Qiu, H.; Cao, X. Evaluation of long-term carbon sequestration of biochar in soil with biogeochemical field model. Sci. Total Environ. 2022, 822, 153576. [Google Scholar] [CrossRef] [PubMed]
- Subedi, R.; Taupe, N.; Ikoyi, I.; Bertora, C.; Zavattaro, L.; Schmalenberger, A.; Leahy, J.J.; Grignani, C. Chemically and biologically-mediated fertilizing value of manure-derived biochar. Sci. Total Environ. 2016, 550, 924–933. [Google Scholar] [CrossRef] [PubMed]
- Ji, M.; Wang, X.; Usman, M.; Liu, F.; Dan, Y.; Zhou, L.; Campanaro, S.; Luo, G.; Sang, W. Effects of different feedstocks-based biochar on soil remediation: A review. Environ. Pollut. 2022, 294, 118655. [Google Scholar] [CrossRef]
- Lehmann, J.; Joseph, S. (Eds.) Fundamentals of Biochar Production. In Biochar for Environmental Management: Science, Technology and Implementation; Routledge: London, UK; New York, NY, USA, 2015; pp. 39–62. [Google Scholar]
- Liu, C.; Wang, H.; Li, P.; Xian, Q.; Tang, X. Biochar’s impact on dissolved organic matter (DOM) export from a cropland soil during natural rainfalls. Sci. Total Environ. 2019, 650, 1988–1995. [Google Scholar] [CrossRef]
- Cen, R.; Feng, W.; Yang, F.; Wu, W.; Liao, H.; Qu, Z. Effect mechanism of biochar application on soil structure and organic matter in semi-arid areas. J. Environ. Manag. 2021, 286, 112198. [Google Scholar] [CrossRef]
- Luo, S.; Wang, S.; Tian, L.; Li, S.; Li, X.; Shen, Y.; Tian, C. Long-term biochar application influences soil microbial community and its potential roles in semiarid farmland. Appl. Soil. Ecol. 2017, 117, 10–15. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, Q.; Jian, H.; Wang, C.; Xing, B.; Sun, H.; Hao, Y. Effect of biochar-derived dissolved organic matter on adsorption of sulfamethoxazole and chloramphenicol. J. Hazard. Mater. 2020, 396, 122598. [Google Scholar] [CrossRef]
- Huang, M.; Li, Z.; Luo, N.; Yang, R.; Wen, J.; Huang, B.; Zeng, G. Application potential of biochar in environment: Insight from degradation of biochar-derived DOM and complexation of DOM with heavy metals. Sci. Total Environ. 2019, 646, 220–228. [Google Scholar] [CrossRef]
- Smebye, A.; Alling, V.; Vogt, R.D.; Gadmar, T.C.; Mulder, J.; Cornelissen, G.; Hale, S.E. Biochar amendment to soil changes dissolved organic matter content and composition. Chemosphere 2016, 142, 100–105. [Google Scholar] [CrossRef]
- Zhang, P.; Huang, P.; Xu, X.; Sun, H.; Jiang, B.; Liao, Y. Spectroscopic and molecular characterization of biochar-derived dissolved organic matter and the associations with soil microbial responses. Sci. Total Environ. 2020, 708, 134619. [Google Scholar] [CrossRef]
- Liu, C.H.; Chu, W.; Li, H.; Boyd, S.; Teppen, B.; Mao, J.; Lehmann, J.; Zhang, W. Quantification and characterization of dissolved organic carbon from biochars. Geoderma 2019, 335, 161–169. [Google Scholar] [CrossRef]
- Han, L.; Nie, X.; Wei, J.; Gu, M.; Wu, W.; Chen, M. Effects of feedstock biopolymer compositions on the physiochemical characteristics of dissolved black carbon from lignocellulose-based biochar. Sci. Total Environ. 2021, 751, 141491. [Google Scholar] [CrossRef]
- Smith, C.R.; Sleighter, R.L.; Hatcher, P.G.; Lee, J.W. Molecular characterization of inhibiting biochar water-extractable substances using electrospray ionization fourier transform ion cyclotron resonance mass spectrometry. Environ. Sci. Technol. 2013, 47, 13294–13302. [Google Scholar] [CrossRef] [PubMed]
- Das, S.K.; Ghosh, G.K.; Avasthe, R.K.; Sinha, K. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. J. Environ. Manag. 2021, 278, 111501. [Google Scholar] [CrossRef] [PubMed]
- Wei, S.; Zhu, M.; Fan, X.; Song, J.; Li, K.; Jia, W.; Song, H. Influence of pyrolysis temperature and feedstock on carbon fractions of biochar produced from pyrolysis of rice straw, pine wood, pig manure and sewage sludge. Chemosphere 2019, 218, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Duan, W.; Liu, C.; Zhu, D.; Si, X.; Zhu, R.; Oleszczuk, P.; Pan, B. Formation of persistent free radicals in biochar derived from rice straw based on a detailed analysis of pyrolysis kinetics. Sci. Total Environ. 2020, 715, 136575. [Google Scholar] [CrossRef]
- Gui, X.; Liu, C.; Li, F.; Wang, J. Effect of pyrolysis temperature on the composition of DOM in manure-derived biochar. Ecotoxicol. Environ. Saf. 2020, 197, 110597. [Google Scholar] [CrossRef]
- Lin, Y.; Munroe, P.; Joseph, S.; Henderson, R.; Ziolkowski, A. Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 2012, 87, 151–157. [Google Scholar] [CrossRef]
- Li, M.; Zhang, A.; Wu, H.; Liu, H.; Lv, J. Predicting potential release of dissolved organic matter from biochars derived from agricultural residues using fluorescence and ultraviolet absorbance. J. Hazard. Mater. 2017, 334, 86–92. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.; Dong, X.; Liu, H. Evaluating fluorescent dissolved organic matter released from wetland-plant derived biochar: Effects of extracting solutions. Chemosphere 2018, 212, 638–644. [Google Scholar] [CrossRef]
- Tfaily, M.M.; Chu, R.K.; Toyoda, J.; Tolić, N.; Robinson, E.W.; Paša-Tolić, L.; Hess, N.J. Sequential extraction protocol for organic matter from soils and sediments using high resolution mass spectrometry. Anal. Chim. Acta 2017, 972, 54–61. [Google Scholar] [CrossRef] [PubMed]
- Zhu, R.; Tolu, J.; Deng, L.; Fiskal, A.; Winkel, L.H.; Lever, M.A. Improving the extraction efficiency of sedimentary carbohydrates by sequential hydrolysis. Org. Geochem. 2020, 141, 103963. [Google Scholar] [CrossRef]
- Ellerbrock, R.H.; Kaiser, M. Stability and composition of different soluble soil organic matter fractions–evidence from δ13C and FTIR signatures. Geoderma 2005, 128, 28–37. [Google Scholar] [CrossRef]
- Li, B.; Yang, L.; Wang, C.Q.; Zhang, Q.P.; Liu, Q.C.; Li, Y.D.; Xiao, R. Adsorption of Cd (II) from aqueous solutions by rape straw biochar derived from different modification processes. Chemosphere 2017, 175, 332–340. [Google Scholar] [CrossRef]
- Zhao, S.X.; Ta, N.; Wang, X.D. Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies 2017, 10, 1293. [Google Scholar] [CrossRef] [Green Version]
- Yao, X.; Zheng, Y.; Zhou, H.; Xu, K.; Xu, Q.; Li, L. Effects of biomass blending, ashing temperature and potassium addition on ash sintering behaviour during co-firing of pine sawdust with a Chinese anthracite. Renew. Energy 2020, 147, 2309–2320. [Google Scholar] [CrossRef]
- Li, S.; Xu, S.; Liu, S.; Yang, C.; Lu, Q. Fast pyrolysis of biomass in free-fall reactor for hydrogen-rich gas. Fuel Process. Technol. 2004, 85, 1201–1211. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Bro, R. Characterizing dissolved organic matter fluorescence with parallel factor analysis: A tutorial. Limnol. Oceanogr. Methods 2008, 6, 572–579. [Google Scholar] [CrossRef]
- Chen, Z.; Xiao, X.; Chen, B.; Zhu, L. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures. Environ. Sci. Technol. 2015, 49, 309–317. [Google Scholar] [CrossRef]
- Wu, L.; Zheng, H.; Wang, X. Effects of soil amendments on fractions and stability of soil organic matter in saline-alkaline paddy. J. Environ. Manag. 2021, 294, 112993. [Google Scholar] [CrossRef]
- Dai, H.; Chen, Y.; Liu, K.; Li, Z.; Qian, X.; Zang, H.; Yang, X.; Zhao, Y.; Shen, Y.; Li, Z.; et al. Water-stable aggregates and carbon accumulation in barren sandy soil depend on organic amendment method: A three-year field study. J. Clean. Prod. 2019, 212, 393–400. [Google Scholar] [CrossRef]
- Zhao, W.; Zhou, Q.; Tian, Z.; Cui, Y.; Liang, Y.; Wang, H. Apply biochar to ameliorate soda saline-alkali land, improve soil function and increase corn nutrient availability in the Songnen Plain. Environ. Sci. Technol. 2020, 722, 137428. [Google Scholar] [CrossRef] [PubMed]
- Balaria, A.; Johnson, C.E.; Xu, Z. Molecular-scale characterization of hot-water-extractable organic matter in organic horizons of a forest soil. Soil Sci. Soc. Am. J. 2009, 73, 812–821. [Google Scholar] [CrossRef]
- Curtin, D.; Beare, M.H.; Chantigny, M.H.; Greenfield, L.G. Controls on the extractability of soil organic matter in water over the 20 to 80 °C temperature range. Soil Sci. Soc. Am. J. 2011, 75, 1423–1430. [Google Scholar] [CrossRef]
- Gregorich, E.G.; Beare, M.H.; Stoklas, U.; St-Georges, P. Biodegradability of soluble organic matter in maize-cropped soils. Geoderma 2003, 113, 237–252. [Google Scholar] [CrossRef]
- Mukherjee, A.; Zimmerman, A.R. Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 2013, 193, 122–130. [Google Scholar] [CrossRef]
- Demirbas, A. Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. J. Anal. Appl. Pyrolysis 2004, 72, 243–248. [Google Scholar] [CrossRef]
- Li, S.; Wang, C.; Luo, Z.; Zhu, X. Investigation on the catalytic behavior of alkali metals and alkaline earth metals on the biomass pyrolysis assisted with real-time monitoring. Energy Fuels 2020, 34, 12654–12664. [Google Scholar] [CrossRef]
- Weishaar, J.L.; Aiken, G.R.; Bergamaschi, B.A.; Fram, M.S.; Fujii, R.; Mopper, K. Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ. Sci. Technol. 2003, 37, 4702–4708. [Google Scholar] [CrossRef]
- Uyguner, C.S.; Bekbolet, M. Implementation of spectroscopic parameters for practical monitoring of natural organic matter. Desalination 2005, 176, 47–55. [Google Scholar] [CrossRef]
- Zornoza, R.; Moreno-Barriga, F.; Acosta, J.A.; Muñoz, M.A.; Faz, A. Stability, nutrient availability and hydrophobicity of biochars derived from manure, crop residues, and municipal solid waste for their use as soil amendments. Chemosphere 2016, 144, 122–130. [Google Scholar] [CrossRef] [PubMed]
- Murphy, E.M.; Zachara, J.M.; Smith, S.C. Influence of mineral-bound humic substances on the sorption of hydrophobic organic compounds. Environ. Sci. Technol. 1990, 24, 1507–1516. [Google Scholar] [CrossRef] [Green Version]
- Piccolo, A.; Mbagwu, J.S. Role of hydrophobic components of soil organic matter in soil aggregate stability. Soil Sci. Soc. Am. J. 1999, 63, 1801–1810. [Google Scholar] [CrossRef]
- Guggenberger, G.; Zech, W. Dissolved organic carbon in forest floor leachates: Simple degradation products or humic substances? Sci. Total Environ. 1994, 152, 37–47. [Google Scholar] [CrossRef]
- Harvey, O.R.; Herbert, B.E.; Kuo, L.J.; Louchouarn, P. Generalized two-dimensional perturbation correlation infrared spectroscopy reveals mechanisms for the development of surface charge and recalcitrance in plant-derived biochars. Environ. Sci. Technol. 2012, 46, 10641–10650. [Google Scholar] [CrossRef]
- Peuravuori, J.; Pihlaja, K. Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal. Chim. Acta 1997, 337, 133–149. [Google Scholar] [CrossRef]
- Stefanidis, S.D.; Kalogiannis, K.G.; Iliopoulou, E.F.; Michailof, C.M.; Pilavachi, P.A.; Lappas, A.A. A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 2014, 105, 143–150. [Google Scholar] [CrossRef]
- López-González, D.; Fernandez-Lopez, M.; Valverde, J.L.; Sanchez-Silva, L. Gasification of lignocellulosic biomass char obtained from pyrolysis: Kinetic and evolved gas analyses. Energy 2014, 71, 456–467. [Google Scholar] [CrossRef]
- Amon, R.M.; Benner, R. Bacterial utilization of different size classes of dissolved organic matter. Limnol. Oceanogr. 1996, 41, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Ji, R.; Su, L.; Cheng, H.; Wang, Y.; Min, J.; Chen, M.; Li, H.; Chen, S.; Wang, S.; Yu, G.; et al. Insights into the potential release of dissolved organic matter from different agro-forest waste-derived hydrochars: A pilot study. J. Clean. Prod. 2021, 319, 128676. [Google Scholar] [CrossRef]
- Ishii, S.K.; Boyer, T.H. Behavior of reoccurring PARAFAC components in fluorescent dissolved organic matter in natural and engineered systems: A critical review. Environ. Sci. Technol. 2012, 46, 2006–2017. [Google Scholar] [CrossRef] [PubMed]
- Erich, M.S.; Plante, A.F.; Fernández, J.M.; Mallory, E.B.; Ohno, T. Effects of profile depth and management on the composition of labile and total soil organic matter. Soil Sci. Soc. Am. J. 2012, 76, 408–419. [Google Scholar] [CrossRef]
- Westerhoff, P.; Chen, W.; Esparza, M. Fluorescence analysis of a standard fulvic acid and tertiary treated wastewater. J. Environ. Qual. 2001, 30, 2037–2046. [Google Scholar] [CrossRef] [PubMed]
- Lichtman, J.W.; Conchello, J.A. Fluorescence microscopy. Nat. Methods 2005, 2, 910–919. [Google Scholar] [CrossRef] [PubMed]
- Rodríguez-Vidal, F.J.; García-Valverde, M.; Ortega-Azabache, B.; González-Martínez, Á.; Bellido-Fernández, A. Characterization of urban and industrial wastewaters using excitation-emission matrix (EEM) fluorescence: Searching for specific fingerprints. J. Environ. Manag. 2020, 263, 110396. [Google Scholar] [CrossRef]
- Stedmon, C.A.; Markager, S. Resolving the variability in dissolved organic matter fluorescence in a temperate estuary and its catchment using PARAFAC analysis. Limnol. Oceanogr. 2005, 50, 686–697. [Google Scholar] [CrossRef]
- Tan, K.H.; Giddens, J.E. Molecular weights and spectral characteristics of humic and fulvic acids. Geoderma 1972, 8, 221–229. [Google Scholar] [CrossRef]
- Karimi, E.; Shirmardi, M.; Dehestani Ardakani, M.; Gholamnezhad, J.; Zarebanadkouki, M. The effect of humic acid and biochar on growth and nutrients uptake of calendula (Calendula officinalis L.). Commun. Soil Sci. Plant Anal. 2020, 51, 1658–1669. [Google Scholar] [CrossRef]
- Yang, F.; Zhang, S.; Cheng, K.; Antonietti, M. A hydrothermal process to turn waste biomass into artificial fulvic and humic acids for soil remediation. Sci. Total Environ. 2019, 686, 1140–1151. [Google Scholar] [CrossRef]
- McKnight, D.M.; Boyer, E.W.; Westerhoff, P.K.; Doran, P.T.; Kulbe, T.; Andersen, D.T. Spectrofluorometric characterization of dissolved organic matter for indication of precursor organic material and aromaticity. Limnol. Oceanogr. 2001, 46, 38–48. [Google Scholar] [CrossRef]
- Zhao, Y.; Wei, Y.; Zhang, Y.; Wen, X.; Xi, B.; Zhao, X.; Zhang, X.; Wei, Z. Roles of composts in soil based on the assessment of humification degree of fulvic acids. Ecol. Indic. 2017, 72, 473–480. [Google Scholar] [CrossRef]
- Murray, K.; Linder, P.W. Fulvic acids: Structure and metal binding: II. Predominant metal binding sites. J. Soil. Sci. 1984, 35, 217–222. [Google Scholar] [CrossRef]
- Leng, L.; Xu, S.; Liu, R.; Yu, T.; Zhuo, X.; Leng, S.; Xiong, Q.; Huang, H. Nitrogen containing functional groups of biochar: An overview. Bioresour. Technol. 2020, 298, 122286. [Google Scholar] [CrossRef] [PubMed]
- Marcińczyk, M.; Oleszczuk, P. Biochar and engineered biochar as slow-and controlled-release fertilizers. J. Clean. Prod. 2022, 339, 130685. [Google Scholar] [CrossRef]
- Bian, R.; Joseph, S.; Shi, W.; Li, L.; Taherymoosavi, S.; Pan, G. Biochar DOM for plant promotion but not residual biochar for metal immobilization depended on pyrolysis temperature. Sci. Total Environ. 2019, 662, 571–580. [Google Scholar] [CrossRef]
- Uchimiya, M.; Ohno, T.; He, Z. Pyrolysis temperature-dependent release of dissolved organic carbon from plant, manure, and biorefinery wastes. J. Anal. Appl. Pyrolysis 2013, 104, 84–94. [Google Scholar] [CrossRef]
- Yang, H.; Yan, R.; Chen, H.; Lee, D.H.; Zheng, C. Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 2007, 86, 1781–1788. [Google Scholar] [CrossRef]
- Jassal, R.S.; Johnson, M.S.; Molodovskaya, M.; Black, T.A.; Jollymore, A.; Sveinson, K. Nitrogen enrichment potential of biochar in relation to pyrolysis temperature and feedstock quality. J. Environ. Manag. 2015, 152, 140–144. [Google Scholar] [CrossRef]
Composition | Rape Straw | Apple Tree Branches | Pine Sawdust | |
---|---|---|---|---|
Proximate Analysis | water (%) | 5.01 ± 0.08 | 2.63 ± 0.12 | 2.24 ± 0.33 |
ash (%) | 3.49 ± 0.03 | 2.32 ± 0.02 | 1.55 ± 0.02 | |
volatile (%) | 80.02 ± 0.54 | 80.00 ± 0.42 | 82.72 ± 0.39 | |
fixed carbon (%) | 11.47 ± 0.23 | 15.04 ± 0.17 | 13.49 ± 0.16 | |
Lignocellulosic contents | cellulose (%) | 41.08 ± 2.26 | 46.22 ± 1.30 | 54.69 ± 2.01 |
hemicellulose (%) | 27.95 ± 5.13 | 16.68 ± 0.55 | 11.08 ± 2.65 | |
lignin (%) | 16.00 ± 3.08 | 30.73 ± 0.97 | 26.43 ± 1.22 |
Biochar | DOC Concentration (mg·g−1) | Cumulative DOC Concentration (mg·g−1) | ||
---|---|---|---|---|
Water | Hot Water | NaOH Solution | ||
RS 300 | 15.55 ± 0.09 b | 4.59 ± 0.22 c | 29.03 ± 0.64 a | 49.17 ± 0.95 |
RS 500 | 1.48 ± 0.07 b | 0.48 ± 0.05 c | 3.72 ± 0.21 a | 5.68 ± 0.33 |
RS 700 | 1.24 ± 0.12 c | 0.17 ± 0.03 b | 3.29 ± 0.09 a | 4.70 ± 0.24 |
ATB 300 | 1.42 ± 0.20 b | 1.38 ± 0.07 b | 15.31 ± 0.28 a | 18.11 ± 0.55 |
ATB 500 | 0.23 ± 0.03 b | 0.20 ± 0.06 b | 1.85 ± 0.06 a | 2.28 ± 0.15 |
ATB 700 | 0.27 ± 0.03 b | 0.07 ± 0.02 c | 0.42 ± 0.08 a | 0.76 ± 0.11 |
PS 300 | 0.25 ± 0.02 b | 0.28 ± 0.08 b | 7.35 ± 0.16 a | 7.88 ± 0.26 |
PS 500 | 0.08 ± 0.01 b | 0.09 ± 0.02 b | 0.62 ± 0.02 a | 0.79 ± 0.05 |
PS 700 | 0.12 ± 0.03 b | 0.11 ± 0.03 b | 0.51 ± 0.03 a | 0.74 ± 0.09 |
Biochar | SUVA254 (L·mg−1·m−1) | E2/E3 | ||||
---|---|---|---|---|---|---|
Water | Hot Water | NaOH Solution | Water | Hot Water | NaOH Solution | |
RS 300 | 4.51 ± 0.10 b | 4.53 ± 0.11 b | 6.77 ± 0.20 a | 5.34 ± 0.07 a | 3.91 ± 0.09 b | 2.81 ± 0.02 c |
RS 500 | 3.50 ± 0.25 b | 4.16 ± 0.02 a | 1.22 ± 0.02 c | 9.50 ± 0.21 b | 14.91 ± 0.79 a | 8.39 ± 0.86 b |
RS 700 | 0.21 ± 0.02 b | 1.67 ± 0.14 a | 0.30 ± 0.02 b | 5.44 ± 1.10 c | 34.00 ± 0.33 a | 9.56 ± 0.78 b |
ATB 300 | 1.93 ± 0.26 b | 2.07 ± 0.01 b | 2.94 ± 0.01 a | 5.38 ± 0.11 a | 4.42 ± 0.17 b | 3.38 ± 0.05 c |
ATB 500 | 3.16 ± 0.19 ab | 2.26 ± 0.61 b | 3.42 ± 0.45 a | 4.50 ± 1.08 ab | 5.26 ± 0.32 a | 2.89 ± 0.03 b |
ATB 700 | 1.81 ± 0.30 b | 2.01 ± 0.71 ab | 3.24 ± 0.47 a | 3.83 ± 0.03 b | 8.97 ± 0.74 a | 2.13 ± 0.54 c |
PS 300 | 1.59 ± 0.02 c | 2.64 ± 0.13 b | 3.52 ± 0.16 a | 8.47 ± 0.44 a | 4.49 ± 0.80 b | 3.65 ± 0.19 b |
PS 500 | 3.77 ± 0.55 a | 3.26 ± 0.08 b | 4.05 ± 0.51 a | 5.58 ± 0.96 b | 8.14 ± 0.22 a | 3.36 ± 0.57 c |
PS 700 | 1.64 ± 0.45 b | 0.43 ± 0.13 c | 3.42 ± 0.64 a | 6.50 ± 0.01 b | 8.71 ± 0.71 a | 1.90 ± 0.10 c |
Average | 2.46 ± 0.24 b | 2.56 ± 0.22 b | 3.21 ± 0.27 a | 6.06 ± 0.44 b | 10.31 ± 0.46 a | 4.23 ± 0.35 c |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Zhao, B.; Zhang, X.; Li, L.; Zhao, Y.; Li, Y.; Duan, K. Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol. Materials 2022, 15, 3865. https://doi.org/10.3390/ma15113865
Liu H, Zhao B, Zhang X, Li L, Zhao Y, Li Y, Duan K. Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol. Materials. 2022; 15(11):3865. https://doi.org/10.3390/ma15113865
Chicago/Turabian StyleLiu, Hui, Baowei Zhao, Xin Zhang, Liujun Li, Yue Zhao, Yingquan Li, and Kaixiang Duan. 2022. "Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol" Materials 15, no. 11: 3865. https://doi.org/10.3390/ma15113865
APA StyleLiu, H., Zhao, B., Zhang, X., Li, L., Zhao, Y., Li, Y., & Duan, K. (2022). Investigating Biochar-Derived Dissolved Organic Carbon (DOC) Components Extracted Using a Sequential Extraction Protocol. Materials, 15(11), 3865. https://doi.org/10.3390/ma15113865