Study on Milling Force and Surface Quality during Slot Milling of Plain-Woven CFRP with PCD Tools
Abstract
:1. Introduction
2. Preparation Works
2.1. Workpiece Materials and Cutting Tools
2.2. Equivalent Cutting Area
2.3. Experimental Setup and Measuring System
3. Results and Discussion
3.1. Effect of Equivalent Cutting Area on Milling Force
3.2. Effect of Equivalent Cutting Area on Surface Roughness
3.3. Analysis of Variance (ANOVA) of Milling Force and Surface Roughness
3.4. Delamination and Tearing
4. Conclusions
- The increase in tool rake angle can improve the sharpness of the edge and play a positive role in reducing the cutting force. Additionally, the cutting force is positively correlated with the equivalent cutting area. When the equivalent cutting area increases, the cutting force increases. When the equivalent cutting area decreases, the cutting force also decreases.
- The increase in tool rake angle has no obvious effect on surface roughness. However, the surface roughness will be affected by the equivalent cutting area, because the material-removal mechanism and failure form are different under different equivalent cutting areas.
- The influence of spindle speed on cutting force and surface roughness is the most significant, followed by feed speed, and the influence of cutting depth is the least significant.
- Delamination will appear on the top and both sides of the groove, which is due to the low restraint of the top fiber.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haddad, M.; Zitoune, R.; Eyma, F.; Castanié, B. Influence of machining process and machining induced surface roughness on mechanical properties of continuous fiber composites. Exp. Mech. 2015, 55, 519–528. [Google Scholar] [CrossRef]
- Prakash, R.; Krishnaraj, V.; Zitoune, R.; Sheikh-Ahmad, J. High-Speed Edge Trimming of CFRP and Online Monitoring of Performance of Router Tools Using Acoustic Emission. Materials 2016, 9, 798. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Satoru, M.; Yuta, M.; Shinya, H.; Fumihiro, I. Mechanism for changes in cutting forces for down-milling of unidirectional carbon fiber reinforced polymer laminates: Modeling and experimentation. Int. J. Mach. Tool. Manuf. 2016, 100, 7–13. [Google Scholar] [CrossRef]
- Karpat, Y.; Polat, N. Mechanistic force modeling for milling of carbon fiber reinforced polymers with double helix tools. CIRP Ann.-Manuf. Technol. 2013, 62, 95–98. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Qin, X.; He, G.; Price, M.A.; Jin, Y.; Sun, D. An energy based force prediction method for UD-CFRP orthogonal machining. Compos. Struct. 2016, 159, 34–43. [Google Scholar] [CrossRef] [Green Version]
- Wang, F.J.; Yin, J.W.; Ma, J.W.; Jia, Z.Y.; Yang, F.; Niu, B. Effects of cutting edge radius and fiber cutting angle on the cutting-induced surface damage in machining of unidirectional CFRP composite laminates. Int. J. Adv. Manuf. Technol. 2017, 91, 3107–3120. [Google Scholar] [CrossRef]
- Wang, H.; Sun, J.; Li, J.; Lu, L.; Li, N. Evaluation of cutting force and cutting temperature in milling carbon fiber-reinforced polymer composites. Int. J. Adv. Manuf. Technol. 2016, 82, 1517–1525. [Google Scholar] [CrossRef]
- Karpat, Y.; Bahtiyar, O.; DeGer, B. Mechanistic force modeling for milling of unidirectional carbon fiber reinforced polymer laminates. Int. J. Mach. Tool. Manuf. 2012, 56, 79–93. [Google Scholar] [CrossRef]
- Li, H.; Qin, X.; Huang, T.; Liu, X.; Sun, D.; Jin, Y. Machining quality and cutting force signal analysis in UD-CFRP milling under different fiber orientation. Int. J. Adv. Manuf. Technol. 2018, 98, 2377–2387. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Qiao, W.; Li, Z.; Wang, N.; Zhang, J.; Wang, T. High-speed milling of CFRP composites: A progressive damage model of cutting force. Int. J. Adv. Manuf. Technol. 2019, 106, 1005–1015. [Google Scholar] [CrossRef]
- Jia, Z.; Su, Y.; Niu, B.; Zhang, B.; Wang, F. The interaction between the cutting force and induced sub-surface damage in machining of carbon fiber-reinforced plastics. J. Reinf. Plast. Comp. 2016, 35, 712–726. [Google Scholar] [CrossRef]
- Madhavan, V.; Lipczynski, G.; Lane, B.; Whitenton, E. Fiber orientation angle effects in machining of unidirectional CFRP laminated composites. J. Manuf. Process. 2014, 20, 431–442. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Liu, G.; An, Q.; Chen, M. Occurrence and formation mechanism of surface cavity defects during orthogonal milling of CFRP laminates. Compos. Part B-Eng. 2017, 109, 10–22. [Google Scholar] [CrossRef]
- El-Hofy, M.H.; Soo, S.L.; Aspinwall, D.K.; Sim, W.M.; Pearson, D.; Harden, P. Factors affecting workpiece surface integrity in slotting of CFRP. Procedia Eng. 2011, 19, 94–99. [Google Scholar] [CrossRef] [Green Version]
- Çolak, O.; Sunar, T. Cutting Forces and 3D Surface Analysis of CFRP Milling with PCD Cutting Tools. Procedia CIRP 2016, 45, 75–78. [Google Scholar] [CrossRef] [Green Version]
- Nguyen-Dinh, N.; Bouvet, C.; Zitoune, R. Influence of machining damage generated during trimming of CFRP composite on the compressive strength. J. Compos. Mater. 2019, 54, 1413–1430. [Google Scholar] [CrossRef]
- Oliveria, T.L.L.; Zitoune, R.; Ancelotti, A.C.J.; da Cunha, S.S.J. Smart machining: Monitoring of CFRP milling using AE and IR. Compos. Struct. 2020, 249, 112611. [Google Scholar] [CrossRef]
- Haddad, M.; Zitoune, R.; Bougherara, H.; Eyma, F.; Castanié, B. Study of trimming damages of structures in function of the machining processes and their impact on the mechanical bahavior. Compos. Part B-Eng. 2014, 57, 136–143. [Google Scholar] [CrossRef]
- Haddad, M.; Zitoune, R.; Eyma, F.; Castanie, B. Study of the surface defects and dust generated during trimming of CFRP: Influence of tool geometry, machining parameters and cutting speed range. Compos. Part A Appl. Sci. Manuf. 2014, 66, 142–154. [Google Scholar] [CrossRef]
- Muhamad Khairussaleh, N.K.; Che Haron, C.H.; Ghani, J.A. Study on wear mechanism of solid carbide cutting tool in milling CFRP. J. Mater. Res. 2016, 31, 1893–1899. [Google Scholar] [CrossRef]
- Nguyen-Dinh, N.; Zitoune, R.; Bouvet, C.; Leroux, S. Surface integrity while trimming of composite structures: X-ray tomography analysis. Compos. Struct. 2019, 210, 735–746. [Google Scholar] [CrossRef] [Green Version]
- Kitajima, T.; Horiuchi, T.; Yui, A. Effect of Cutting Speed on the Face Milling of CFRP Using a PCD Tool. Mater. Sci. Forum. 2016, 874, 487–491. [Google Scholar] [CrossRef]
- Kusuyama, J.; Yui, A.; Kitajima, T. Face Milling of Carbon Fiber Reinforced Plastic using Poly Crystalline Diamond Tool. Adv. Mat. Res. 2014, 1017, 383–388. [Google Scholar] [CrossRef]
- Nguyen-Dinh, N.; Hejjaji, A.; Zitoune, R.; Bouvet, C.; Salem, M. New tool for reduction of harmful particulate dispersion and to improve machining quality when trimming carbon/epoxy composites. Compos. Part A Appl. Sci. Manuf. 2020, 131, 105806. [Google Scholar] [CrossRef]
- Kuo, C.; Wang, C.; Ko, S. Wear behaviour of CVD diamond-coated tools in the drilling of woven CFRP composites. Wear 2017, 398, 1–12. [Google Scholar] [CrossRef]
- Feito, N.; Diaz-Álvarez, J.; López-Puente, J.; Miguelez, M.H. Numerical analysis of the influence of tool wear and special cutting geometry when drilling woven CFRPs. Compos. Struct. 2016, 138, 285–294. [Google Scholar] [CrossRef]
- Thongkaew, K.; Wang, J.; Li, W.Y. An investigation of the hole machining processes on woven carbon-fiber reinforced polymers (CFRPs) using abrasive waterjets. Mach. Sci. Technol. 2019, 23, 19–38. [Google Scholar] [CrossRef]
- Hintze, W.; Cordes, M.; Koerkel, G. Influence of weave structure on delamination when milling CFRP. J. Mater. Process. Technol. 2014, 216, 199–205. [Google Scholar] [CrossRef]
- Li, M.; Huang, M.; Jiang, X.; Kuo, C.L.; Yang, X. Study on burr occurrence and surface integrity during slot milling of multidirectional and plain woven CFRPs. Int. J. Adv. Manuf. Technol. 2018, 97, 163–173. [Google Scholar] [CrossRef]
- Ghafarizadeh, S.; Chatelain, J.F.; Lebrun, G. Finite element analysis of surface milling of carbon fiber-reinforced composites. Int. J. Adv. Manuf. Technol. 2016, 87, 399–409. [Google Scholar] [CrossRef]
- Ning, H.F.; Zheng, H.L.; Zhang, S.G.; Yuan, X.M. Milling force prediction model development for CFRP multidirectional laminates and segmented specific cutting energy analysis. Int. J. Adv. Manuf. Technol. 2021, 113, 2437–2445. [Google Scholar] [CrossRef]
- Xiao, J.; Gao, C.; Ke, Y. An analytical approach to cutting force prediction in milling of carbon fiber reinforced polymer laminates. Mach. Sci. Technol. 2018, 22, 1012–1028. [Google Scholar] [CrossRef]
- Davim, J.P.; Reis, P. Damage and dimensional precision on milling carbon fiber-reinforced plastics using design experiments. J. Mater. Process. Technol. 2005, 160, 160–167. [Google Scholar] [CrossRef]
- Choudhury, M.R.; Rao, G.S.; Debnath, K.; Mahapatra, R.N. Analysis of force, temperature, and surface roughness during ending milling of green composites. J. Nat. Fibers 2021, 1–15. [Google Scholar] [CrossRef]
- Janardhan, P.; Sheikh-Ahmad, J.; Cheraghi, H. Edge trimming of CFRP with diamond interlocking tools. SAE Tech. Pap. 2006, 1, 3173. [Google Scholar] [CrossRef]
- Wang, H.; Qin, X.; Wu, D.; Song, A. Optimization of Cutting Parameters in Helical Milling of Carbon Fiber Reinforced Polymer. Trans. Tianjin. Univ. 2017, 24, 91–100. [Google Scholar] [CrossRef]
- Sheikh-Ahmad, J.; Urban, N.; Gheraghi, H. Machining damage in edge trimming of CFRP. Mater. Manuf. Process. 2012, 27, 802–808. [Google Scholar] [CrossRef]
- Haddad, M.; Zitoune, R. Machinability and surface quality during high speed trimming of multi directional CFRP. Int. J. Mach. Mach. Mater. 2013, 13, 289–310. [Google Scholar] [CrossRef]
Tensile Strength/Mpa | Shear Strength/Mpa | Tensile Modulus/Gpa | Density/g·cm−3 |
---|---|---|---|
4410 | 140 | 250 | 1.78 |
0° PCD Tool | 4° PCD Tool | |
---|---|---|
Diameter/mm | 10 | 10 |
Number of cutting edge | 2 | 2 |
Rake Angle/° | 0 | 4 |
Clearance angle/° | 13 | 13 |
Helix angle/° | 0 | 0 |
Experimental No. | Cutting Parameters | |||
---|---|---|---|---|
Spindle Speed n (rpm) | ||||
1 | 6000 | 0.6 | 0.8 | 0.025465 |
2 | 6000 | 0.8 | 1 | 0.042441 |
3 | 6000 | 1 | 1.2 | 0.063662 |
4 | 8000 | 0.6 | 1 | 0.023873 |
5 | 8000 | 0.8 | 1.2 | 0.038197 |
6 | 8000 | 1 | 0.8 | 0.031831 |
7 | 10,000 | 0.6 | 1.2 | 0.022918 |
8 | 10,000 | 0.8 | 0.8 | 0.020372 |
9 | 10,000 | 1 | 1 | 0.031831 |
Source | DOF | Seq.SS | Adj.MS | F | Contribution |
---|---|---|---|---|---|
Spindle speed | 2 | 231.258 | 115.629 | 26.43 | 41.12% |
Feed Rate | 2 | 226.145 | 113.072 | 25.84 | 40.21% |
Depth of cut | 2 | 105.022 | 52.511 | 12.00 | 18.67% |
Error | 2 | 8.751 | 4.375 | ||
Total | 8 | 571.175 |
Source | DOF | Seq.SS | Adj.MS | F | Contribution |
---|---|---|---|---|---|
Spindle speed | 2 | 183.475 | 91.7373 | 478.32 | 53.16% |
Feed Rate | 2 | 111.173 | 55.5864 | 289.83 | 32.21% |
Depth of cut | 2 | 50.498 | 25.2491 | 131.65 | 14.63% |
Error | 2 | 0.384 | 0.1918 | ||
Total | 8 | 345.529 |
Source | DOF | Seq.SS | Adj.MS | F | Contribution |
---|---|---|---|---|---|
Spindle speed | 2 | 0.04455 | 0.02228 | 67.35 | 48.48% |
Feed Rate | 2 | 0.03277 | 0.01638 | 49.54 | 35.66% |
Depth of cut | 2 | 0.01457 | 0.00728 | 22.03 | 15.86% |
Error | 2 | 0.00066 | 0.00033 | ||
Total | 8 | 0.09256 |
Source | DOF | Seq.SS | Adj.MS | F | Contribution |
---|---|---|---|---|---|
Spindle speed | 2 | 0.1176 | 0.0588 | 157.18 | 51.85% |
Feed Rate | 2 | 0.0577 | 0.0288 | 77.13 | 25.44% |
Depth of cut | 2 | 0.0515 | 0.0257 | 68.84 | 22.71% |
Error | 2 | 0.0007 | 0.0003 | ||
Total | 8 | 0.2275 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, Z.; Wang, Y. Study on Milling Force and Surface Quality during Slot Milling of Plain-Woven CFRP with PCD Tools. Materials 2022, 15, 3862. https://doi.org/10.3390/ma15113862
Xu Z, Wang Y. Study on Milling Force and Surface Quality during Slot Milling of Plain-Woven CFRP with PCD Tools. Materials. 2022; 15(11):3862. https://doi.org/10.3390/ma15113862
Chicago/Turabian StyleXu, Ziyang, and Yongguo Wang. 2022. "Study on Milling Force and Surface Quality during Slot Milling of Plain-Woven CFRP with PCD Tools" Materials 15, no. 11: 3862. https://doi.org/10.3390/ma15113862
APA StyleXu, Z., & Wang, Y. (2022). Study on Milling Force and Surface Quality during Slot Milling of Plain-Woven CFRP with PCD Tools. Materials, 15(11), 3862. https://doi.org/10.3390/ma15113862